Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Silver proves its mettle for nanotech applications

Abstract:
The self-assembling properties of the DNA molecule have allowed for the construction of an intriguing range of nanoscale forms. Such nanoarchitectures may eventually find their way into a new generation of microelectronics, semiconductors, biological and chemical sensing devices and a host of biomedical applications.

By Richard Harth

Silver proves its mettle for nanotech applications

Tempe, AZ | Posted on March 19th, 2010

Now Hao Yan and Yan Liu, professors at the Biodesign Institute's Center for Single Molecule Biophysics and their collaborators have introduced a new method to deterministically and precisely position silver nanoparticles onto self-assembling DNA scaffolds.

In their latest research, the group used a long single-strand of DNA, which had been folded into a triangular building platform through a process known as DNA origami. This architectural foundation was then ‘decorated' with one, two or three silver nanoparticles, which self-assembled at pre-determined locations on the DNA nanostructure. The group's experimental results, which appear in the advanced online edition of the journal Angewandte Chemie, demonstrate for the first time the viability of using silver, rather than the gold nanoparticles traditionally applied to DNA-tile or origami based architectures. The study was co-authored by Suchetan Pal, Zhengtao Deng, Baoquan Ding.

One of many applications for DNA scaffolds studded with nanoparticles is to perform precise sensing operations at the molecular scale. Sensitive detection of single molecules with high specificity is of great scientific interest for chemists, biologists, pharmacologists, medical researchers and those involved in environmental areas where trace analysis is required. The detailed study of human genes is but one area where improved single-molecule detection could be of enormous benefit.

In their current effort, the group sought to exploit the properties of the silver nanoparticles to increase the surface plasmon resonance—a vibration of electrons that can give researchers clues regarding the molecular nature of the sample they are studying. "Theoretically, people predicted that a local surface plasmon resonance can be much stronger if you use silver particles compared to gold," said Yan. These locally enhanced areas between nanoparticles are referred to as electrical hot spots.

The group however, had to overcome significant obstacles to the use of silver nanoparticles. Silver tends to be much less stable than gold and can easily oxidize in its normal state. To counter this tendency, Yan and Liu's team attached multiple sulfur atoms to the backbone of the DNA strand used to make the platform for the nanoparticles. Each silver nanoparticle is then firmly held in place by nine sulfur atoms, once it is mounted on the DNA origami shape.

The new study paves the way for creating a more functional DNA architecture. "I believe this work will open doors to implement and study distance-dependent plasmonic interaction between noble nanoparticles at the single particle level," Yan said, adding that the first critical steps to creating hierarchically organized silver nanoparticle structures have now been taken.

####

About Arizona State University Biodesign Institute
The hundreds of researchers at ASU’s Biodesign Institute are driven by a passion to solve some of the world’s most urgent problems affecting human health and the health of our planet:

* Improving health care through more personalized medicine
* Outpacing the global threat of infectious diseases
* Improving our environment through renewable energy and bioremediation

For more information, please click here

Contacts:
Richard Harth
Biodesign Institute Science Writer

Copyright © Arizona State University Biodesign Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Possible Futures

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Chip Technology

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Self Assembly

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Researchers fabricate high performance Cu(OH)2 supercapacitor electrodes December 29th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Sensors

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Researchers create practical and versatile microscopic optomechanical device: Trapping light and mechanical waves within a tiny bullseye, design could enable more sensitive motion detection January 11th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Nanobiotechnology

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project