Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano-based RFID tags could replace bar codes

Photo caption: RFID tags printed through a new roll-to-roll process could replace bar codes and make checking out of a store a snap. Photo credit: Gyou-Jin Cho/Sunchon National University
Photo caption: RFID tags printed through a new roll-to-roll process could replace bar codes and make checking out of a store a snap. Photo credit: Gyou-Jin Cho/Sunchon National University

Abstract:
Rice, Korean collaboration produces printable tag

Nano-based RFID tags could replace bar codes

Houston, TX | Posted on March 18th, 2010

Long lines at store checkouts could be history if a new technology created in part at Rice University comes to pass.

Rice researchers, in collaboration with a team led by Gyou-jin Cho at Sunchon National University in Korea, have come up with an inexpensive, printable transmitter that can be invisibly embedded in packaging. It would allow a customer to walk a cart full of groceries or other goods past a scanner on the way to the car; the scanner would read all items in the cart at once, total them up and charge the customer's account while adjusting the store's inventory.

More advanced versions could collect all the information about the contents of a store in an instant, letting a retailer know where every package is at any time.

The technology reported in the March issue of the journal IEEE Transactions on Electron Devices is based on a carbon-nanotube-infused ink for ink-jet printers first developed in the Rice lab of James Tour, the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. The ink is used to make thin-film transistors, a key element in radio-frequency identification (RFID) tags that can be printed on paper or plastic.

"We are going to a society where RFID is a key player," said Cho, a professor of printed electronics engineering at Sunchon, who expects the technology to mature in five years. Cho and his team are developing the electronics as well as the roll-to-roll printing process that, he said, will bring the cost of printing the tags down to a penny apiece and make them ubiquitous.

RFID tags are almost everywhere already. The tiny electronic transmitters are used to identify and track products and farm animals. They're in passports, library books and devices that let drivers pass through tollbooths without digging for change.

The technology behind RFID goes back to the 1940s, when Léon Theremin, inventor of the self-named electronic music instrument heard in so many '50s science fiction and horror movies, came up with a spy tool for the Soviet Union that drew power from and retransmitted radio waves.

RFID itself came into being in the 1970s and has been widely adopted by the Department of Defense and industry to track shipping containers as they make their way around the world, among many other uses.

But RFID tags to date are largely silicon-based. Paper or plastic tags printed as part of a package would cut costs dramatically. Cho expects his roll-to-roll technique, which uses a gravure process rather than ink-jet printers, to replace the bar codes now festooned on just about everything you can buy.

Cho, Tour and their teams reported in the journal a three-step process to print one-bit tags, including the antenna, electrodes and dielectric layers, on plastic foil. Cho's lab is working on 16-bit tags that would hold a more practical amount of information and be printable on paper as well.

Cho came across Tour's inks while spending a sabbatical at Rice in 2005. "Professor Tour first recommended we use single-walled carbon nanotubes for printing thin-film transistors," Cho said.

Tour's lab continues to support the project in an advisory role and occasionally hosts Cho's students. Tour said Rice owns half of the patent, still pending, upon which all of the technology is based. "Gyou-jin has carried the brunt of this, and it's his sole project," Tour said. "We are advisers and we still send him the raw materials" -- the single-walled carbon nanotubes produced at Rice.

Printable RFIDs are practical because they're passive. The tags power up when hit by radio waves at the right frequency and return the information they contain. "If there's no power source, there's no lifetime limit. When they receive the RF signal, they emit," Tour said.

There are several hurdles to commercialization. First, the device must be reduced to the size of a bar code, about a third the size of the one reported in the paper, Tour said. Second, its range must increase.

"Right now, the emitter has to be pretty close to the tags, but it's getting farther all the time," he said. "The practical distance to have it ring up all the items in your shopping cart is a meter. But the ultimate would be to signal and get immediate response back from every item in your store - what's on the shelves, their dates, everything.

"At 300 meters, you're set - you have real-time information on every item in a warehouse. If something falls behind a shelf, you know about it. If a product is about to expire, you know to move it to the front - or to the bargain bin."

Tour allayed concerns about the fate of nanotubes in packaging. "The amount of nanotubes in an RFID tag is probably less than a picogram. That means you can produce one trillion of them from a gram of nanotubes - a miniscule amount. Our HiPco reactor produces a gram of nanotubes an hour, and that would be enough to handle every item in every Walmart.

"In fact, more nanotubes occur naturally in the environment, so it's not even fair to say the risk is minimal. It's infinitesimal."

Co-authors of the paper include Rice graduate student Ashley Leonard; Minhun Jung, Jinsoo Noh and Gwangyong Lee of Sunchon National University; and Jaeyoung Kim, Namsoo Lim, Chaemin Lim, Junseok Kim, Kyunghwan Jung and Hwiwon Kang of the Printed Electronics Research Center, Paru Corp., Sunchon, Korea.

Read the paper at: ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5406115

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,102 undergraduates and 2,237 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
Director of National Media Relations
Rice University
Direct: 713-348-6327
Cell: 612-702-9473

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Thin films

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

3x improvement in wear resistance from Carbodeon nanodiamond-enhanced electroless nickel plating October 14th, 2014

Tailored flexible illusion coatings hide objects from detection October 13th, 2014

HZO Teams With Deutsche Telekom to Unveil the Waterproof Tolino Vision 2 eReader: The New HZO Protected eReader Ushers in a New Era of Waterproof Electronics, Providing a Seamless User Experience Without the Risk of Using Port Doors and Mechanical Seals October 10th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Nanoelectronics

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Aledia’s Nanowire LED Technology Endorsed By 2014 Physics Nobel Prize Winner: Hiroshi Amano Serves on Company’s Scientific Advisory Board October 13th, 2014

Announcements

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Homeland Security

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Research partnerships

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

RFID

LogiTag’s Active RTLS Solution Selected by Hebrew University Nano Labs to Safeguards and Monitor Students and Staff May 13th, 2014

Leti and Partners in SOCRATE Project Focusing on Miniature Antennas with Super-Directivity Radiation Properties: Improving Directivity of Small Antennas Would Enhance Spectral Efficiency, Reduce Environmental Impact and Increase Functionality July 15th, 2013

IDTechEx launches online Market Intelligence Portal May 23rd, 2013

Mincom Capital Inc. and Group Nanoxplore Inc. Sign Letter of Intent for a Qualifying Transaction April 10th, 2013

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE