Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Self-assembling computer chips

MIT researchers coaxed tiny, chainlike molecules to arrange themselves into complex patterns, like this one, on a silicon chip. Previously, self-assembling molecules have required some kind of template on the chip surface — either a trench etched into the chip, or a pattern created through chemical modification. But the MIT technique instead uses sparse silicon “hitching posts.” The molecules attach themselves to the posts and spontaneously assume the desired patterns. Image: Yeon Sik Jung and Joel Yang
MIT researchers coaxed tiny, chainlike molecules to arrange themselves into complex patterns, like this one, on a silicon chip. Previously, self-assembling molecules have required some kind of template on the chip surface — either a trench etched into the chip, or a pattern created through chemical modification. But the MIT technique instead uses sparse silicon “hitching posts.” The molecules attach themselves to the posts and spontaneously assume the desired patterns. Image: Yeon Sik Jung and Joel Yang

Abstract:
Molecules that arrange themselves into predictable patterns on silicon chips could lead to microprocessors with much smaller circuit elements.

By Larry Hardesty, MIT News Office

Self-assembling computer chips

Cambridge, MA | Posted on March 16th, 2010

The features on computer chips are getting so small that soon the process used to make them, which has hardly changed in the last 50 years, won't work anymore. One of the alternatives that academic researchers have been exploring is to create tiny circuits using molecules that automatically arrange themselves into useful patterns. In a paper that appeared Monday in Nature Nanotechnology, MIT researchers have taken an important step toward making that approach practical.

Currently, chips are built up, layer by layer, through a process called photolithography. A layer of silicon, metal, or some other material is deposited on a chip and coated with a light-sensitive material, called a photoresist. Light shining through a kind of stencil — a "mask" — projects a detailed pattern onto the photoresist, which hardens where it's exposed. The unhardened photoresist is washed away, and chemicals etch away the bare material underneath.

The problem is that chip features are now significantly smaller than the wavelength of the light used to make them. Manufacturers have developed various tricks to get light to produce patterns smaller than its own wavelength, but they won't work at smaller scales.

The obvious way to continue shrinking chip features would be to use beams of electrons to transfer mask patterns to layers of photoresist. But unlike light, which can shine through a mask and expose an entire chip at once, an electron beam has to move back and forth across the surface of a chip in parallel lines, like a harvester working along rows of wheat. "It's like the difference between writing by hand and printing a page all at once," says Karl Berggren, the Emanuel E. Landsman Associate Professor of Electrical Engineering, who along with Caroline Ross, the Toyota Professor of Materials Science and Engineering, led the new work. The slow, precise scanning of electron-beam lithography makes it significantly more expensive than conventional optical lithography.

Hitchin' posts

Berggren and Ross' approach is to use electron-beam lithography sparingly, to create patterns of tiny posts on a silicon chip. They then deposit specially designed polymers — molecules in which smaller, repeating molecular units are linked into long chains — on the chip. The polymers spontaneously hitch up to the posts and arrange themselves into useful patterns.

The trick is that the polymers are "copolymers," meaning they're made of two different types of polymer. Berggren compares a copolymer molecule to the characters played by Robert De Niro and Charles Grodin in the movie Midnight Run, a bounty hunter and a white-collar criminal who are handcuffed together but can't stand each other. Ross prefers a homelier analogy: "You can think of it like a piece of spaghetti joined to a piece of tagliatelle," she says. "These two chains don't like to mix. So given the choice, all the spaghetti ends would go here, and all the tagliatelle ends would go there, but they can't, because they're joined together." In their attempts to segregate themselves, the different types of polymer chain arrange themselves into predictable patterns. By varying the length of the chains, the proportions of the two polymers, and the shape and location of the silicon hitching posts, Ross, Berggren, and their colleagues were able to produce a wide range of patterns useful in circuit design.

One of the two polymers that the MIT researchers used burns away when exposed to a plasma (an electrically charged gas), while the other, which contains silicon, turns to glass. The glass layer could serve the same purpose that a photoresist does in ordinary lithography, protecting the material beneath it while that around it is etched away.

Free expression

Dan Herr, the director of nanomanufacturing science research at the Semiconductor Research Corporation, an industry and academic research consortium, says that four or five years ago, his organization polled engineers to determine the seven fundamental shapes that self-organizing molecules would have to be able to assume in order to be useful for circuit manufacture. Since then, he says, researchers have gotten molecules to self-assemble into all seven shapes. But to do so, they've "changed the chemistry on the surface or etched down a trench in the surface and used that as a channel for the self-assembling process," Herr says. Since Berggren and Ross's technique requires no such channels to guide the self-assembling molecules, it reduces the need for electron-beam lithography. According to Herr, "That will save tremendously in terms of throughput" — that is, the efficiency with which chips can be manufactured.

Much more research is required, however, before self-assembling molecules can provide a viable means for manufacturing individual chips. Nearer term, Berggren and Ross see the technique's being used to produce stamps that could impart nanoscale magnetic patterns to the surfaces of hard disks, or even to produce the masks used in conventional lithography: today, state-of-the art masks for a single chip require electron-beam lithography and can cost millions of dollars. In the meantime, Ross and Berggren are working to find arrangements of their nanoscale posts that will produce functioning circuits in prototype chips, and they're trying to refine their technique to produce even smaller chip features.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology and other areas of scholarship that will best serve the nation and the world in the 21st century — whether the focus is cancer, energy, economics or literature.

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Chip Technology

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Self Assembly

Nanocubes Get in a Twist : Competing forces coax nanocubes into helical structures August 11th, 2014

Self-assembly of gold nanoparticles into small clusters August 4th, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Nanoelectronics

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Announcements

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE