Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Imperfections are perfect

Figure 1. The red circles show the position of holes in the optical chip in what has so far been seen as an ideal structure. Random disorder has been introduced in this structure (compare the position of red circles to the actual holes (black) in the structure), which results in the localisation of light (orange areas).
Figure 1. The red circles show the position of holes in the optical chip in what has so far been seen as an ideal structure. Random disorder has been introduced in this structure (compare the position of red circles to the actual holes (black) in the structure), which results in the localisation of light (orange areas).

Abstract:
Researchers from DTU Fotonik surprise the scientific world with their new discovery which, in the long term, may be used in, e.g., solar cells and quantum computers. Their findings will be published on 12 March 2010 in the prestigious international journal Science.

By Lotte Krull

Imperfections are perfect

Denmark | Posted on March 16th, 2010

All over the world, intensive research is being conducted on how to use the smallest particles of light, photons, for communication applications. Where electronic technology makes use of microchips, optical communication uses the so-called optical chip.

On optical chips, a structure of holes is etched, and it is by means of these holes that the researchers try to control the photons' movements on the chip So far, the aim has been to achieve a regular and ordered hole structure, and it has been the general conviction that disorder or imperfections in the hole structure reduce or simply destroy the functionality of the optical chip.

Disorder as a valuable resource

A group of researchers from DTU Fotonik has now turned everything totally upside down and demonstrated that disordered structures on optical chips may actually be an advantage. The researchers deliberately placed the holes on the optical chip irregularly, and this improved the chip.

It has thus proved possible to capture and thus control photons very effectively on the ‘disordered' chip. The discovery allows the production of a brand new type of optical chips where disorder is utilised as a valuable resource instead of being considered a limitation.

This finding is a major basic scientific breakthrough, which is published in the international journal Science on 12 March 2010.

The discovery may potentially be used in, e.g., solar cells and optical sensors or within quantum information technology. The dawning quantum information technology promises fundamentally new ways of coding and processing information, using the laws of quantum mechanics. This can, among other things, be used for 100% secure information exchange or, ultimately, for a quantum computer which can perform calculations far faster than the supercomputers of today.

The research group behind the discovery

The research has been conducted at the Department of Photonics Engineering at the Technical University of Denmark by a research group consisting of postdocs Luca Sapienza, Søren Stobbe and David Garcia, PhD students Henri Thyrrestrup and Stephan Smolka as well as Associate Professor and group leader Peter Lodahl.

####

For more information, please click here

Contacts:
Associate Professor Peter Lodahl
DTU Fotonik, Quantum Photonics Group tel. (mobile): +45 51 64 74 83


See also: www.fotonik.dtu.dk/quantumphotonics

Copyright © Technical University of Denmark

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Possible Futures

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

Chip Technology

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Quantum Computing

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Spintronics advance brings wafer-scale quantum devices closer to reality June 24th, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Discovery paves way for new kinds of superconducting electronics June 22nd, 2015

Nanoelectronics

Exagan Raises €5.7 Million to Produce High-efficiency GaN-on-Silicon Power-switching Devices on 200mm Wafers: Leti-and-Soitec Spinout Focused on Becoming Leading European Source Of GaN Devices for Solar, Automotive, Telecoms and Infrastructure June 25th, 2015

Nanowires could be the LEDs of the future June 25th, 2015

Leti to Present Solutions to New Applications Using 3D Technologies at SEMICON West LetiDay Event, July 14: Leti Experts also Will Speak at TechXPOT Session on MEMS and STS Session on Lithography Cost-and-Productivity Issues Below 14nm June 22nd, 2015

Graphene heat-transfer riddle unraveled June 17th, 2015

Discoveries

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Announcements

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Energy

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Research partnerships

June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

Solar/Photovoltaic

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Toward tiny, solar-powered sensors: New ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent June 23rd, 2015

Quantum nanoscience

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

UAB researchers design the most precise quantum thermometer to date: The device would be capable of measuring the temperature of a cell's interior June 7th, 2015

Visualizing the 'matrix': App provides insight into the quantum world of coupled nuclear spins June 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project