Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Imperfections are perfect

Figure 1. The red circles show the position of holes in the optical chip in what has so far been seen as an ideal structure. Random disorder has been introduced in this structure (compare the position of red circles to the actual holes (black) in the structure), which results in the localisation of light (orange areas).
Figure 1. The red circles show the position of holes in the optical chip in what has so far been seen as an ideal structure. Random disorder has been introduced in this structure (compare the position of red circles to the actual holes (black) in the structure), which results in the localisation of light (orange areas).

Abstract:
Researchers from DTU Fotonik surprise the scientific world with their new discovery which, in the long term, may be used in, e.g., solar cells and quantum computers. Their findings will be published on 12 March 2010 in the prestigious international journal Science.

By Lotte Krull

Imperfections are perfect

Denmark | Posted on March 16th, 2010

All over the world, intensive research is being conducted on how to use the smallest particles of light, photons, for communication applications. Where electronic technology makes use of microchips, optical communication uses the so-called optical chip.

On optical chips, a structure of holes is etched, and it is by means of these holes that the researchers try to control the photons' movements on the chip So far, the aim has been to achieve a regular and ordered hole structure, and it has been the general conviction that disorder or imperfections in the hole structure reduce or simply destroy the functionality of the optical chip.

Disorder as a valuable resource

A group of researchers from DTU Fotonik has now turned everything totally upside down and demonstrated that disordered structures on optical chips may actually be an advantage. The researchers deliberately placed the holes on the optical chip irregularly, and this improved the chip.

It has thus proved possible to capture and thus control photons very effectively on the ‘disordered' chip. The discovery allows the production of a brand new type of optical chips where disorder is utilised as a valuable resource instead of being considered a limitation.

This finding is a major basic scientific breakthrough, which is published in the international journal Science on 12 March 2010.

The discovery may potentially be used in, e.g., solar cells and optical sensors or within quantum information technology. The dawning quantum information technology promises fundamentally new ways of coding and processing information, using the laws of quantum mechanics. This can, among other things, be used for 100% secure information exchange or, ultimately, for a quantum computer which can perform calculations far faster than the supercomputers of today.

The research group behind the discovery

The research has been conducted at the Department of Photonics Engineering at the Technical University of Denmark by a research group consisting of postdocs Luca Sapienza, Søren Stobbe and David Garcia, PhD students Henri Thyrrestrup and Stephan Smolka as well as Associate Professor and group leader Peter Lodahl.

####

For more information, please click here

Contacts:
Associate Professor Peter Lodahl
DTU Fotonik, Quantum Photonics Group tel. (mobile): +45 51 64 74 83


See also: www.fotonik.dtu.dk/quantumphotonics

Copyright © Technical University of Denmark

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Possible Futures

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Chip Technology

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Quantum Computing

A little light interaction leaves quantum physicists beaming August 25th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

New optical chip lights up the race for quantum computer August 14th, 2015

Quantum computing advance locates neutral atoms August 12th, 2015

Nanoelectronics

Turning clothing into information displays September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Discoveries

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Announcements

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Energy

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

RUSNANOPRIZE Directorate Announces New Deadline for Nominations Submission – September 11, 2015 September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Research partnerships

Turning clothing into information displays September 2nd, 2015

Sustainable nanotechnology center September 1st, 2015

$200K Awarded to Develop In Vitro Lung Test for Toxicity of Inhaled Nanomaterials: In Vitro Lung Test Designed to Protect Human Health and Replace Animal Testing September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Solar/Photovoltaic

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Quantum nanoscience

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Seeing quantum motion August 30th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic