Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > 3-D cell culture: making cells feel right at home

Abstract:
Startup Nano3D Bio's system based on Rice-M.D. Anderson tech

Research in this week's Nature Nanotechnology takes aim at a biological icon: the two-dimensional petri dish. Scientists from Rice University and the University of Texas M.D. Anderson Cancer Center have found a simple way to suspend cells in magnetic fields so they grow into three-dimensional cell cultures. Compared with flat cell cultures, the 3-D cell cultures more closely resemble real tissues from the body and should provide more realistic targets for testing new drugs.

3-D cell culture: making cells feel right at home

Houston, TX | Posted on March 15th, 2010

The film "Avatar" isn't the only 3-D blockbuster making a splash this winter. A team of scientists from Houston's Texas Medical Center this week unveiled a new technique for growing 3-D cell cultures, a technological leap from the flat petri dish that could save millions of dollars in drug-testing costs. The research is reported in Nature Nanotechnology.

The 3-D technique is easy enough for most labs to set up immediately. It uses magnetic forces to levitate cells while they divide and grow. Compared with cell cultures grown on flat surfaces, the 3-D cell cultures tend to form tissues that more closely resemble those inside the body.

"There's a big push right now to find ways to grow cells in 3-D because the body is 3-D, and cultures that more closely resemble native tissue are expected to provide better results for preclinical drug tests," said study co-author Tom Killian, associate professor of physics at Rice. "If you could improve the accuracy of early drug screenings by just 10 percent, it's estimated you could save as much as $100 million per
drug."

For cancer research, the "invisible scaffold" created by the magnetic field goes beyond its potential for producing cell cultures that are more reminiscent of real tumors, which itself would be an important advance, said co-author Wadih Arap, professor in the David H. Koch Center at The University of Texas M.D. Anderson Cancer Center.

To make cells levitate, the research team modified a combination of gold nanoparticles and engineered viral particles called "phage" that was developed in the lab of Arap and Renata Pasqualini, also of the Koch Center. This targeted "nanoshuttle" can deliver payloads to specific organs or tissues.

"A logical next step for us will be to use this additional magnetic property in targeted ways to explore possible applications in the imaging and treatment of tumors," Arap said.

The 3-D modeling raises another interesting long-term possibility. "This is a step toward building better models of organs in the lab," Pasqualini said.

The new technique is an example of the innovation that can result when experts come together from disparate fields. Killian studies ultracold atoms and uses finely tuned magnetic fields to manipulate them. He had been working with Rice bioengineer Robert Raphael for several years on methods to use magnetic fields to manipulate cells. So when Killian's friend Glauco Souza, then an Odyssey Scholar studying with Arap and Pasqualini, mentioned one day that he was developing a gel that could load cancer cells with magnetic nanoparticles, it led to a new idea.

"We wondered if we might be able to use magnetic fields to manipulate the cells after my gels put magnetic nanoparticles into them," said Souza, who left M.D. Anderson in 2009 to co-found Nano3D Biosciences (www.n3dbio.com), a startup that subsequently licensed the technology from Rice and M.D. Anderson.

The nanoparticles in this case are tiny bits of iron oxide. These are added to a gel that contains phage. When cells are added to the gel, the phage causes the particles to be absorbed into cells over a few hours. The gel is then washed away, and the nanoparticle-loaded cells are placed in a petri dish filled with a liquid that promotes cell growth and division.

In the new study, the researchers showed that by placing a coin-sized magnet atop the dish's lid, they could lift the cells off the bottom of the dish, concentrate them and allow them to grow and divide while they were suspended in the liquid.

A key experiment was performed in collaboration with Jennifer Molina, a graduate student in the laboratory of Maria-Magdalena Georgescu, an M.D. Anderson associate professor in neuro-oncology and also a co-author, in which the technique was used on brain tumor cells called glioblastomas. The results showed that cells grown in the 3-D medium produced proteins that were similar to those produced by gliobastoma tumors in mice, while cells grown in 2-D did not show this similarity.

Souza said that Nano3D Biosciences is conducting additional tests to compare how the new method stacks up against existing methods of growing 3-D cell cultures. He said he is hopeful that it will provide results that are just as good, if not better, than longstanding techniques that use 3-D scaffolds.

Raphael, a paper co-author, associate professor in bioengineering and a member of Rice's BioScience Research Collaborative, said, "The beauty of this method is that it allows natural cell-cell interactions to drive assembly of 3-D microtissue structures. The method is fairly simple and should be a good point of entry in 3-D cell culturing for any lab that's interested in drug discovery, stem cell biology, regenerative medicine or biotechnology."

Other co-authors include Daniel Stark and Jeyarama Ananta, both of Rice; Carly Levin of Nano3D Biosciences; and Michael Ozawa, Lawrence Bronk, Jami Mandelin, James Bankson and Juri Gelovani, all of M.D. Anderson.

The research was funded by M.D. Anderson's Odyssey Scholar Program, the Department of Defense's Breast Cancer Research Program, the National Science Foundation, the Packard Foundation, the Gillson-Longenbaugh Foundation, AngelWorks, the National Institutes of Health and the National Cancer Institute.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,102 undergraduates and 2,237 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. To learn more, visit www.rice.edu.

Who Knew? explore.rice.edu/explore/Who_Knew.asp

About M. D. Anderson
The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 39 Comprehensive Cancer Centers designated by the National Cancer Institute. For six of the past eight years, M. D. Anderson has ranked No. 1 in cancer care in “America's Best Hospitals,” a survey published annually in U.S. News and World Report. To learn more, visit www.mdanderson.org.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778


Scott Merville
713-792-0661

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Nanomedicine

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Announcements

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Nanobiotechnology

Mechanism behind nature's sparkles revealed October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

Research partnerships

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE