Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanobotmodels Company offer vision of future DNA and cell-repair techniques

Abstract:
Five decades of research and practical application of computers in biomedicine has given rise to the discipline of medical informatics, which has made many advances in genomic and translational medicine possible.

Nanobotmodels Company offer vision of future DNA and cell-repair techniques

Ukraine | Posted on March 15th, 2010

Developments in nanotechnology and nanorobotics are opening up the prospects for nanomedicine and regenerative medicine where informatics and DNA computing can become the catalysts enabling health care applications at sub-molecular or atomic scales. While nanomedicine promises a new exciting frontier for clinical practice and biomedical research, issues involving cost-effectiveness studies, clinical trials and toxicity assays, drug delivery methods, and the implementation of new personalized therapies still remain challenging.

DNA damage, due to environmental factors and normal metabolic processes inside the cell, occurs at a rate of 1,000 to 1,000,000 molecular lesions per cell per day.

The vast majority of DNA damage affects the primary structure of the double helix; that is, the bases themselves are chemically modified. These modifications can in turn disrupt the molecules' regular helical structure by introducing non-native chemical bonds or bulky adducts that do not fit in the standard double helix. Unlike proteins and RNA, DNA usually lacks tertiary structure and therefore damage or disturbance does not occur at that level.

DNA repair nanorobotics will utilize the same tasks that living systems already prove possible. Access to cells is possible because biologists can stick needles into cells without killing them. Thus, molecular machines are capable of entering the cell.

Also, all specific biochemical interactions show that molecular systems can recognize other molecules by touch, build or rebuild every molecule in a cell, and can disassemble damaged molecules. Finally, cells that replicate prove that molecular systems can assemble every system found in a cell. Therefore, since nature has demonstrated the basic operations needed to perform molecular-level cell repair, in the future, nanomachine based systems will be built that are able to enter cells, sense differences from healthy ones and make modifications to the structure.

The possibilities of these cell repair machines are impressive. Comparable to the size of viruses or bacteria, their compact parts would allow them to be more complex. The early machines will be specialized. As they open and close cell membranes or travel through tissue and enter cells and viruses, machines will only be able to correct a single molecular disorder like DNA damage or enzyme deficiency. Later, cell repair machines will be programmed with more abilities with the help of advanced AI systems. Powerful nanocomputers and fast sequenators will be needed to guide these machines.

These computers will direct machines to examine, take apart, and rebuild damaged molecular structures. Repair machines will be able to repair whole cells by working structure by structure. Then by working cell by cell and tissue by tissue, whole organs can be repaired. Finally, by working organ by organ, health is restored to the body. Cells damaged to the point of inactivity can be repaired because of the ability of molecular machines to build cells from scratch. Therefore, cell repair machines will free medicine from reliance on self repair alone.

Nanobotmodels Company provides it own vision of DNA-repair cell nanorobots. This type of molecular machine can attach DNA strands and remove damaged fragments from it.

Special express DNA-sequenator analyze all DNA and cut off damaged nucleotides, or unwanted genes.
This model is based on diamondoid nanorobot conception offered by Robert Freitas Jr. Maybe in near future nanorobotic devices will be more sophisticated than today.

Cell repair nanorobotics is young developing part of nanomedicine, so next decade will be decade of DNA reparation using nanotechnology tools.

For more information please visit http://www.nanobotmodels.com/node/47

####

About Nanobotmodels
Our company Nanobotmodels (www.nanobotmodels.com) was founded in 2007 and it goal is develop modern art-science-technology intersections. Nanotechnology boost medicine, engeneering, biotechnology, electronics soon, so artwork and vision of the nanofuture will be very useful.

Our team consist of modern artists, modellers and nanotechnology scientists.

For more information, please click here

Contacts:
common questions:

sales and image permissions:

Svidinenko Yuriy, Nanobotmodels Company CEO

Phone: +38 (096) 470 41 66

Copyright © Nanobotmodels

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Molecular Machines

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Measuring the nanoworld September 4th, 2018

All wired up: New molecular wires for single-molecule electronic devices August 31st, 2018

Nanotubes change the shape of water: Rice University engineers show how water molecules square up in nanotubes HOUSTON August 24th, 2018

Nanomedicine

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Artificial Intelligence

Nanoscience and the future of healthcare kick off first day of ACS national meeting in Boston: Presidential events highlight safety, diversity and groundbreaking research August 2nd, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

Strategic Materials Conference 2018 Highlights “Materials Shaping the Future of Electronics” July 30th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Nanobiotechnology

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project