Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Nanotubes vs. Nanoribbons

March 14th, 2010

Nanotubes vs. Nanoribbons

Abstract:
Right now, there's no single device that meets U.S. defense and homeland security officials' desire for a hand-held sensor that can detect chemical, biological and nuclear materials without giving excessive false alarms or busting budgets.

But teams of American researchers are looking into ways to build multipurpose sensors based on new forms of carbon molecules. In the drive to build so-called chem-bio-rad nanosensors, nanotubes - carbon molecules coaxed to assemble into long tubes - are competing against flattened nanoribbons.

The research is being led by a joint effort of NASA and the Pentagon's Defense Threat Reduction Agency (DTRA)'s Technology Innovation Office.

Meyya Meyyappan, chief scientist for exploration technology at NASA's Ames Research Center in California, is building a postage-stamp-sized sensor chip based on nanotubes.

Because other sensors can detect parts per billion, Meyyappan spends a lot of time making the case for nanotubes. He notes that nanotube sensors require much less power than conventional technology, which means smaller batteries. They are also generally smaller than similar lab instruments.

"One advantage we have is that this is not a laboratory instrument. A lot of other sensors for nerve gas are bulky instruments, whereas ours will be a postage-stamp-sized chip with low power consumption," he said.

"Don't let anyone tell you nanotubes are expensive," he said. "Each sensor uses a nanogram of nanotubes. So, if you buy one gram, you can make a gazillion sensors. The price [of sensors] is not determined by nanotube cost."

Source:
defensenews.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Possible Futures

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Nanotubes/Buckyballs/Fullerenes

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

WPI researchers build liquid biopsy chip that detects metastatic cancer cells in blood December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Sensors

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Homeland Security

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Military

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project