Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Look at Mie!

From left, Rice graduate students Sergio Dominguez-Medina, Liane Slaughter and Alexei Tcherniak, co-authors (with Stephan Link and Ji Won Ha) of a new paper investigating the plasmonic properties of nanoparticles as they relate to a century-old theory. Courtesy Jeff Fitlow.
From left, Rice graduate students Sergio Dominguez-Medina, Liane Slaughter and Alexei Tcherniak, co-authors (with Stephan Link and Ji Won Ha) of a new paper investigating the plasmonic properties of nanoparticles as they relate to a century-old theory. Courtesy Jeff Fitlow.

Abstract:
Rice team tests century-old calculations

By Mike Williams, Rice News Staff

Look at Mie!

Houston, TX | Posted on March 13th, 2010

Calculations are fine, but seeing is believing. That's the thought behind a new paper by Rice University students who decided to put to the test calculations made more than a century ago.

In 1908, the German physicist Gustav Mie came up with an elegant set of equations to describe the interaction of electromagnetic waves with a spherical metal particle. The theory has been a touchstone ever since for researchers seeking to quantify how nanoscale plasmonic particles scatter radiation.

"The Mie theory is used extensively whenever you deal with nanoparticles and their optical properties," said Alexei Tcherniak, a Rice graduate student and primary author of the new paper in the online edition of Nano Letters this month. "That's the foundation of every calculation."

Tcherniak and Stephan Link, a Rice assistant professor of chemistry and electrical and computer engineering, co-authored the paper with former graduate student Ji Won Ha and current Rice graduate students Liane Slaughter and Sergio Dominguez-Medina.

Better characterization of single nanoparticles is important to researchers pursuing microscopic optical sensors, subwavelength "super lenses," catalysis and photothermal cancer therapies that use nanoparticles.

"Since technology is moving toward single-particle detection, we wanted to see whether Mie's predictions would hold," Tcherniak said. "Average properties fall exactly on the predictions of Mie theory. But we show that individual particles deviate quite a bit."

Particles that differ in size can return similar signals because they vary in shape and orientation on the substrate, with which they also interact. Mie's theory, developed for spherical particles in solution long before the advent of single-particle spectroscopy, did not consider these factors.

The project began as a sideline in the students' attempt to track single nanoparticles in solution. It became their primary focus when they realized the scope of the task, which involved analyzing five sets of gold particles ranging from 51 to 237 nanometers wide - the "biologically relevant" sizes, Tcherniak explained.

Each set of particles was photographed with a scanning electron microscope and then analyzed for its absorption and scattering properties via single-particle photothermal imaging and laser dark-field scattering.

It was tedious, they admitted.

"When you need to find a particle 50 nanometers across on a sample that is 5-by-5 millimeters, you're looking for a needle in a haystack," Tcherniak said. Slaughter and Dominguez-Medina nodded in agreement and recalled a summer of long days categorizing hundreds of particles -- enough "to get all those points on the graph."

They used a couple of strategies to locate particles. One was to put micron-scale grid coordinates on the glass slide containing nanoparticle samples. "That let us know roughly where they were," Tcherniak said.

Another involved applying a bit of astronomy to their microscopy. They found themselves looking for "constellations" in the patterns of specks. "We started saying, 'Oh, that looks like a nose. Do we have a nose anywhere else?'" Slaughter said. "We were so tired; the names might not have been very good."

But their results are.

"Mie theory was around long before anyone knew about nanoparticles, so it's a neat thing to be able to test it," said Link of his students' work. "This is important because they really put together the building blocks that will enable scientists to look at more complex structures. This was not an easy job."

The National Science Foundation, the Robert A. Welch Foundation and 3M supported the research.


####

About Rice University
Rice has from its inception been dedicated to three missions: educating and preparing outstanding students for diverse careers and lives; contributing to the advancement of knowledge across a wide range of fields; and being of service to our city, our state, our nation, and our world. The Call to Conversation posed the question whether our current mission statement fully encompassed our ambitions, particularly our commitment as a research university to creating new knowledge and our obligation to train future leaders across a range of endeavors. It states: “The mission of Rice University, shaped largely by its founder and the first president, is to provide an unsurpassed undergraduate education in science, engineering, the arts, humanities, and social sciences; to produce internationally distinguished scholarship and research and excellent graduate education in carefully focused areas; to ensure that such an education remains affordable; to maintain the distinctive character of a community of learning that is relatively small in scale; and to serve the continuing educational needs of the larger community.”

For more information, please click here

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Academic/Education

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Albany NanoCollege Faculty Member Selected as Editor-in-Chief of the Prestigious Journal of Electronic Materials July 1st, 2014

Nanomedicine

New imaging agent provides better picture of the gut July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Announcements

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Tools

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

Malvern Instruments completes acquisition of MicroCal and announces purchase of Archimedes product from Affinity Biosensors July 25th, 2014

Hysitron is Awarded TWO R&D 100 Awards for Highly Innovative Technology Developments in the Areas of Extreme Environments and Biological Mechanical Property Testing July 23rd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Nanobiotechnology

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload July 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE