Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The Sounds of Nanoscience

The nanotube device (above)
use  a principle first identified by Alexander Graham Bell. “They have no moving parts and can be attached to any surface,” said Dr. Mikhail Kozlov.
The nanotube device (above) use a principle first identified by Alexander Graham Bell. “They have no moving parts and can be attached to any surface,” said Dr. Mikhail Kozlov.

Abstract:
Carbon Nanotube Speakers Could Be Powered by Lasers, Blend into Windows and Transform Noisy Spaces into Peaceful Sanctums

The Sounds of Nanoscience

Richardson, TX | Posted on March 11th, 2010

A UT Dallas team's study published in the Journal of Applied Physics expands the extraordinary capabilities of nanotechnology to include laser-powered acoustic speakers made from assemblies of carbon nanotubes.

The study confirms earlier research that carbon nanotubes that are stretched into sheets and electrically powered can produce intense sound, but researchers at UT Dallas' Alan G. MacDiarmid NanoTech Institute have made some important advancements.

Although prior studies demonstrated that sheets of carbon nanotubes can produce sound when heated with alternating electrical current, the UT Dallas researchers have found that striking tones can be generated by vertical arrays of nanotubes, called forests, which resemble black velvet.

The team also discovered that high-quality sound can be generated when nanotube sheets or forests are struck with laser light that is modulated, or "altered," in the acoustic frequency range.

"Nanotubes assemblies of various types are black and highly conductive," said Dr. Mikhail Kozlov, a research scientist and the study's lead author. "Their dark, conductive surface can be effectively heated with laser light or electricity to induce variations in the pressure of the air around the nanotubes — which we perceive as sound. It's called the photo- or thermo-acoustic effect, and it's the same principle Alexander Graham Bell used to produce sound on the first telephone."

With laser excitation, no electrical contact with the nanotube speaker is required, making the speakers wireless.

"Speakers made with carbon nanotube sheets are extremely thin, light and almost transparent," Kozlov said. "They have no moving parts and can be attached to any surface, which makes the surface acoustically active. They can be concealed in television and computer screens, apartment walls, or in the windows of buildings and cars. The almost invisible strands form films that can ‘talk.'"

In addition to filling a room with sound from invisible speakers, nanotube speakers could easily cancel sound from the noisiest neighbor or dim the roar of traffic rushing past a neighborhood, using the same principles as current sound-canceling technologies.

"The sound generation by nanotube sheets can help to achieve this effect on very large scales," Kozlov said.

Carter Haines, a senior physics major, co-authored the journal article and assisted in putting the nanotube speakers through their paces. He is a former George A. Jeffrey NanoExplorer, who conducted research at the NanoTech Institute while in high school. He has continued to perform research in the lab as an undergraduate.

"Hands-on research like this is very important to me," Haines said. "We had to put together the test set-up from scratch. I've enjoyed tinkering with small projects on my own, but the resources and the source of direction NanoTech offers allows me to explore science on a whole different level."

Along with Kozlov and Haines, the NanoTech research team included:

* Dr. Jiyoung Oh, research associate.
* Dr. Marcio Lima, research associate.
* Dr. Shaoli Fang, associate research professor.

In addition to demonstrating that forests and sheets of nanotubes can generate sound, the team took a number of capability measurements to add to the growing list of characteristics, or properties, scientists can use in future studies. Such characterizations are especially important in new areas of research and serve as platforms of knowledge, built layer by layer, from projects like this.

Haines expressed a sentiment familiar to all researchers upon learning the journal article had been published.

"On the one hand, it's rewarding to see something I worked on get recognized and published," Haines said. "On the other hand, I know this is just one small thing, and if anything, it serves to remind me how much more there is to be done."

####

For more information, please click here

Contacts:
Media Contact:
Brandon V. Webb, UT Dallas
(972) 883-2155

or the Office of Media Relations, UT Dallas
(972) 883-2155

Copyright © UT Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Nanotubes/Buckyballs/Fullerenes

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Cellulose from wood can be printed in 3-D June 17th, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project