Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The Sounds of Nanoscience

The nanotube device (above)
use  a principle first identified by Alexander Graham Bell. “They have no moving parts and can be attached to any surface,” said Dr. Mikhail Kozlov.
The nanotube device (above) use a principle first identified by Alexander Graham Bell. “They have no moving parts and can be attached to any surface,” said Dr. Mikhail Kozlov.

Abstract:
Carbon Nanotube Speakers Could Be Powered by Lasers, Blend into Windows and Transform Noisy Spaces into Peaceful Sanctums

The Sounds of Nanoscience

Richardson, TX | Posted on March 11th, 2010

A UT Dallas team's study published in the Journal of Applied Physics expands the extraordinary capabilities of nanotechnology to include laser-powered acoustic speakers made from assemblies of carbon nanotubes.

The study confirms earlier research that carbon nanotubes that are stretched into sheets and electrically powered can produce intense sound, but researchers at UT Dallas' Alan G. MacDiarmid NanoTech Institute have made some important advancements.

Although prior studies demonstrated that sheets of carbon nanotubes can produce sound when heated with alternating electrical current, the UT Dallas researchers have found that striking tones can be generated by vertical arrays of nanotubes, called forests, which resemble black velvet.

The team also discovered that high-quality sound can be generated when nanotube sheets or forests are struck with laser light that is modulated, or "altered," in the acoustic frequency range.

"Nanotubes assemblies of various types are black and highly conductive," said Dr. Mikhail Kozlov, a research scientist and the study's lead author. "Their dark, conductive surface can be effectively heated with laser light or electricity to induce variations in the pressure of the air around the nanotubes — which we perceive as sound. It's called the photo- or thermo-acoustic effect, and it's the same principle Alexander Graham Bell used to produce sound on the first telephone."

With laser excitation, no electrical contact with the nanotube speaker is required, making the speakers wireless.

"Speakers made with carbon nanotube sheets are extremely thin, light and almost transparent," Kozlov said. "They have no moving parts and can be attached to any surface, which makes the surface acoustically active. They can be concealed in television and computer screens, apartment walls, or in the windows of buildings and cars. The almost invisible strands form films that can ‘talk.'"

In addition to filling a room with sound from invisible speakers, nanotube speakers could easily cancel sound from the noisiest neighbor or dim the roar of traffic rushing past a neighborhood, using the same principles as current sound-canceling technologies.

"The sound generation by nanotube sheets can help to achieve this effect on very large scales," Kozlov said.

Carter Haines, a senior physics major, co-authored the journal article and assisted in putting the nanotube speakers through their paces. He is a former George A. Jeffrey NanoExplorer, who conducted research at the NanoTech Institute while in high school. He has continued to perform research in the lab as an undergraduate.

"Hands-on research like this is very important to me," Haines said. "We had to put together the test set-up from scratch. I've enjoyed tinkering with small projects on my own, but the resources and the source of direction NanoTech offers allows me to explore science on a whole different level."

Along with Kozlov and Haines, the NanoTech research team included:

* Dr. Jiyoung Oh, research associate.
* Dr. Marcio Lima, research associate.
* Dr. Shaoli Fang, associate research professor.

In addition to demonstrating that forests and sheets of nanotubes can generate sound, the team took a number of capability measurements to add to the growing list of characteristics, or properties, scientists can use in future studies. Such characterizations are especially important in new areas of research and serve as platforms of knowledge, built layer by layer, from projects like this.

Haines expressed a sentiment familiar to all researchers upon learning the journal article had been published.

"On the one hand, it's rewarding to see something I worked on get recognized and published," Haines said. "On the other hand, I know this is just one small thing, and if anything, it serves to remind me how much more there is to be done."

####

For more information, please click here

Contacts:
Media Contact:
Brandon V. Webb, UT Dallas
(972) 883-2155

or the Office of Media Relations, UT Dallas
(972) 883-2155

Copyright © UT Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Possible Futures

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanotubes/Buckyballs/Fullerenes

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project