Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The Sounds of Nanoscience

The nanotube device (above)
use  a principle first identified by Alexander Graham Bell. “They have no moving parts and can be attached to any surface,” said Dr. Mikhail Kozlov.
The nanotube device (above) use a principle first identified by Alexander Graham Bell. “They have no moving parts and can be attached to any surface,” said Dr. Mikhail Kozlov.

Abstract:
Carbon Nanotube Speakers Could Be Powered by Lasers, Blend into Windows and Transform Noisy Spaces into Peaceful Sanctums

The Sounds of Nanoscience

Richardson, TX | Posted on March 11th, 2010

A UT Dallas team's study published in the Journal of Applied Physics expands the extraordinary capabilities of nanotechnology to include laser-powered acoustic speakers made from assemblies of carbon nanotubes.

The study confirms earlier research that carbon nanotubes that are stretched into sheets and electrically powered can produce intense sound, but researchers at UT Dallas' Alan G. MacDiarmid NanoTech Institute have made some important advancements.

Although prior studies demonstrated that sheets of carbon nanotubes can produce sound when heated with alternating electrical current, the UT Dallas researchers have found that striking tones can be generated by vertical arrays of nanotubes, called forests, which resemble black velvet.

The team also discovered that high-quality sound can be generated when nanotube sheets or forests are struck with laser light that is modulated, or "altered," in the acoustic frequency range.

"Nanotubes assemblies of various types are black and highly conductive," said Dr. Mikhail Kozlov, a research scientist and the study's lead author. "Their dark, conductive surface can be effectively heated with laser light or electricity to induce variations in the pressure of the air around the nanotubes — which we perceive as sound. It's called the photo- or thermo-acoustic effect, and it's the same principle Alexander Graham Bell used to produce sound on the first telephone."

With laser excitation, no electrical contact with the nanotube speaker is required, making the speakers wireless.

"Speakers made with carbon nanotube sheets are extremely thin, light and almost transparent," Kozlov said. "They have no moving parts and can be attached to any surface, which makes the surface acoustically active. They can be concealed in television and computer screens, apartment walls, or in the windows of buildings and cars. The almost invisible strands form films that can ‘talk.'"

In addition to filling a room with sound from invisible speakers, nanotube speakers could easily cancel sound from the noisiest neighbor or dim the roar of traffic rushing past a neighborhood, using the same principles as current sound-canceling technologies.

"The sound generation by nanotube sheets can help to achieve this effect on very large scales," Kozlov said.

Carter Haines, a senior physics major, co-authored the journal article and assisted in putting the nanotube speakers through their paces. He is a former George A. Jeffrey NanoExplorer, who conducted research at the NanoTech Institute while in high school. He has continued to perform research in the lab as an undergraduate.

"Hands-on research like this is very important to me," Haines said. "We had to put together the test set-up from scratch. I've enjoyed tinkering with small projects on my own, but the resources and the source of direction NanoTech offers allows me to explore science on a whole different level."

Along with Kozlov and Haines, the NanoTech research team included:

* Dr. Jiyoung Oh, research associate.
* Dr. Marcio Lima, research associate.
* Dr. Shaoli Fang, associate research professor.

In addition to demonstrating that forests and sheets of nanotubes can generate sound, the team took a number of capability measurements to add to the growing list of characteristics, or properties, scientists can use in future studies. Such characterizations are especially important in new areas of research and serve as platforms of knowledge, built layer by layer, from projects like this.

Haines expressed a sentiment familiar to all researchers upon learning the journal article had been published.

"On the one hand, it's rewarding to see something I worked on get recognized and published," Haines said. "On the other hand, I know this is just one small thing, and if anything, it serves to remind me how much more there is to be done."

####

For more information, please click here

Contacts:
Media Contact:
Brandon V. Webb, UT Dallas
(972) 883-2155

or the Office of Media Relations, UT Dallas
(972) 883-2155

Copyright © UT Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project