Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanometer Graphene Makes Novel OLEDs Display

Abstract:
Researchers at Stanford University have successfully developed brand new concept of organic lighting-emitting diodes (OLEDs) with a few nanometer of graphene as transparent conductor. This paved the way for inexpensive mass production of OLEDs on large-area low-cost flexible plastic substrate, which could be rolled up like wallpaper and virtually applied to anywhere you want.

Nanometer Graphene Makes Novel OLEDs Display

Stanford, CA | Posted on March 10th, 2010

Due to its superb image quality, low power consumption and ultra-thin device structure, OLED has been developed for more than 20 years, and recently finds its application in ultra-thin televisions and other display screens such as those on digital cameras and mobile phones. OLEDs consist of active organic luminescent structure sandwiched between two electrodes, one of which must be transparent. Traditionally, indium tin oxide (ITO) is used in this type of devices. However, indium is rare, expensive and difficult to recycle. Scientists have been actively searching for an alternative candidate.

The next generation of optoelectronic devices requires transparent conductive electrodes to be lightweight, flexible, cheap, environmental attractive, and compatible with large-scale manufacturing methods. Graphene, single layer of graphite, is becoming a very promising candidate due to its unique electrical and optical properties in last two years. Very recently, Junbo Wu et al., researchers at Stanford University, successfully demonstrated the application of graphene in OLEDs for the first time.

Junbo Wu, leading researcher of the development, said that they achieved OLEDs on graphene with performance similar to a control device on conventional ITO transparent anodes, which is very exciting and promising for real-world application. ‘The current report by Wu et al. puts forward a strong case for graphene as a transparent conductor given its competitive performance, even with significantly high sheet resistance.' said Chongwu Zhou, professor at University of Southern California in the Perspective of ACS Nano, 4(1), 2010.

‘Graphene has the potential to be a transparent electrode with higher performance, which means, more transparent, while at the same time, being more conductive. It could also be orders of magnitude cheaper than conventional transparent conductor, like ITO. It really has the potential to be both better and cheaper.' said Prof. Peter Peumans in Podcast Episode 30, ACS Nano January 2010. ‘It (graphene) does have additional advantage that the electrode is very thin, only a couple of nanometer thick, which gives you potentially a lot more freedom how you design your devices.' Peter also added.

This research sheds light on the enormous potential of graphene, and opens up an entirely new avenue towards the development of efficient and economical transparent conductors for flexible optoelectronic devices, such as OLEDs and organic photovoltaic cells. Transferring of large-area graphene thin film to a foreign flexible substrate has been previously demonstrated. Combining these technologies together, we have good reason to expect graphene OLEDs product on flexible plastic in the near future.

The research is published in the journal ACS Nano, 4(1), 2010, entitled ‘Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes'. The authors are Junbo Wu, Mukul Agrawal, Hector A. Becerril, Zhenan Bao, Zunfeng Liu, Yongsheng Chen and Peter Peumans. For detailed information, please refer to pubs.acs.org/doi/abs/10.1021/nn900728d.

####

For more information, please click here

Contacts:
Junbo Wu
Phone: (650) 704-4362

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Possible Futures

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Solar/Photovoltaic

September 5th, 2018

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project