Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanometer Graphene Makes Novel OLEDs Display

Abstract:
Researchers at Stanford University have successfully developed brand new concept of organic lighting-emitting diodes (OLEDs) with a few nanometer of graphene as transparent conductor. This paved the way for inexpensive mass production of OLEDs on large-area low-cost flexible plastic substrate, which could be rolled up like wallpaper and virtually applied to anywhere you want.

Nanometer Graphene Makes Novel OLEDs Display

Stanford, CA | Posted on March 10th, 2010

Due to its superb image quality, low power consumption and ultra-thin device structure, OLED has been developed for more than 20 years, and recently finds its application in ultra-thin televisions and other display screens such as those on digital cameras and mobile phones. OLEDs consist of active organic luminescent structure sandwiched between two electrodes, one of which must be transparent. Traditionally, indium tin oxide (ITO) is used in this type of devices. However, indium is rare, expensive and difficult to recycle. Scientists have been actively searching for an alternative candidate.

The next generation of optoelectronic devices requires transparent conductive electrodes to be lightweight, flexible, cheap, environmental attractive, and compatible with large-scale manufacturing methods. Graphene, single layer of graphite, is becoming a very promising candidate due to its unique electrical and optical properties in last two years. Very recently, Junbo Wu et al., researchers at Stanford University, successfully demonstrated the application of graphene in OLEDs for the first time.

Junbo Wu, leading researcher of the development, said that they achieved OLEDs on graphene with performance similar to a control device on conventional ITO transparent anodes, which is very exciting and promising for real-world application. ‘The current report by Wu et al. puts forward a strong case for graphene as a transparent conductor given its competitive performance, even with significantly high sheet resistance.' said Chongwu Zhou, professor at University of Southern California in the Perspective of ACS Nano, 4(1), 2010.

‘Graphene has the potential to be a transparent electrode with higher performance, which means, more transparent, while at the same time, being more conductive. It could also be orders of magnitude cheaper than conventional transparent conductor, like ITO. It really has the potential to be both better and cheaper.' said Prof. Peter Peumans in Podcast Episode 30, ACS Nano January 2010. ‘It (graphene) does have additional advantage that the electrode is very thin, only a couple of nanometer thick, which gives you potentially a lot more freedom how you design your devices.' Peter also added.

This research sheds light on the enormous potential of graphene, and opens up an entirely new avenue towards the development of efficient and economical transparent conductors for flexible optoelectronic devices, such as OLEDs and organic photovoltaic cells. Transferring of large-area graphene thin film to a foreign flexible substrate has been previously demonstrated. Combining these technologies together, we have good reason to expect graphene OLEDs product on flexible plastic in the near future.

The research is published in the journal ACS Nano, 4(1), 2010, entitled ‘Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes'. The authors are Junbo Wu, Mukul Agrawal, Hector A. Becerril, Zhenan Bao, Zunfeng Liu, Yongsheng Chen and Peter Peumans. For detailed information, please refer to pubs.acs.org/doi/abs/10.1021/nn900728d.

####

For more information, please click here

Contacts:
Junbo Wu
Phone: (650) 704-4362

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Display technology/LEDs/SS Lighting/OLEDs

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

Possible Futures

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Announcements

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Solar/Photovoltaic

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project