Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Research team uses nanotechnology to deliver targeted cancer treatment

On Target: Lavasanifar (left) and fellow researcher Samar Hamdy are developing complex nanoparticles that range from 100 to 500 nanometres in size.  Photo by Pete Yee
On Target: Lavasanifar (left) and fellow researcher Samar Hamdy are developing complex nanoparticles that range from 100 to 500 nanometres in size. Photo by Pete Yee

Abstract:
A team of researchers at the University of Alberta are using tiny technology for a big purpose — the improvement of cancer treatment.

By Jonathan Taves, Deputy News Editor

Research team uses nanotechnology to deliver targeted cancer treatment

Alberta | Posted on March 9th, 2010

The group, led by Afsaneh Lavasanifar, an associate professor in the Faculty of Pharmacy, is working on a nanoparticle that boost the human body's immune system in its fight against tumours.

"Usually, the immune system of the body should recognize them and basically destroy the cancer cells. But in some cases, because of separate mutations that happen in cancer cells, they make themselves resistant to the effect of the immune cells," Lavasanifar explained.

The developers have created a nanoparticle that is bound with antigens, which are biological molecules that are taken in by cells that help immunity.

"We also load other materials that are called adjuvants and they are supposed to boost the immune response. Then together they are being captured, because their size is optimum for uptake by immune cells," Lavasanifar said. "One of the most important of these cells are dendritic cells. Dendritic cells can engulf antigens, and then they basically order other cells of the immune system what to do."

Lavasanifar added that this treatment can also boost the effectiveness of chemotherapy.

"Another goal we have in my research group is to target chemotherapy drugs towards the cancer cells. The long-term objective of our research group is to combine the two, chemo and immunotherapy, to get better response from both of them. We believe that combing the two approaches will lead to the eradication of the cancer [cells] and the removal of the tumour," she said.

This targeted approach can have many benefits.

"These materials are supposed to lower the dose of chemotherapy that is received by the patients. Overall, they may be cost effective because you need a smaller dose of the drug. And then you don't need to deal with the side effects of the drugs," Lavasanifar said, citing the toll standard chemotherapy procedures can have on the body.

She explained how changing the types of antigens can allow different types of cancer to be treated. One of the group's research focuses hits especially close to home, as the professor of pharmacy who started work on this project, John Samuel, succumbed to cancer at the age of 53 in 2007.

"We are trying to target the cancers that are hard to treat right now. One of those types of cancers is pancreatic cancer, for example. Another one is head and neck cancer — unfortunately, that is the type of cancer that Dr. Samuel actually passed away from," Lavasanifar noted. "He asked me to take over his staff and research program."

Aiming at different types of cells requires modification of the size and surface properties of the nanoparticles.

"If we want to target a tumour, than we have to look at a different size. We have to go below 100 nanometres," Lavasanifar explained. "By doing that, we make these nanoparticles not be recognized by the immune cells so they are not being taken up very rapidly. Then they have a chance to accumulate in the tumour."

However, Lavasanifar noted that clinical trials of the technology haven't been as promising as hoped, and obstacles remain ahead.

"People think that one of the challenges is the immune tolerance that the body develops during cancer's progression. So one of the challenges is to break the tolerance of the body against this cancer vaccine. That is one area we're doing research on," she said.

Another obstacle is the cost of such intricate treatment, but Lavasanifar is optimistic that will decrease.

"As we move along, maybe we'll find better ways to optimize these products," she said. "It's quite costly compared to what is already there, but if they are more effective for a disease like cancer, that's what we have to do."

####

About University of Alberta
The University of Alberta’s vision since its inception more than 100 years ago has been to be one of the world’s great universities for the public good. In the words of our first president, Henry Marshall Tory, the U of A is an institution directed toward the “uplifting of the whole people” in Alberta, across Canada, and around the world. This vision endures in the university’s current vision document, Dare to Discover, and our academic plan, Dare to Deliver.

For more information, please click here

Copyright © University of Alberta

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Nanomedicine

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Announcements

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

Nanobiotechnology

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE