Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Research team uses nanotechnology to deliver targeted cancer treatment

On Target: Lavasanifar (left) and fellow researcher Samar Hamdy are developing complex nanoparticles that range from 100 to 500 nanometres in size.  Photo by Pete Yee
On Target: Lavasanifar (left) and fellow researcher Samar Hamdy are developing complex nanoparticles that range from 100 to 500 nanometres in size. Photo by Pete Yee

Abstract:
A team of researchers at the University of Alberta are using tiny technology for a big purpose — the improvement of cancer treatment.

By Jonathan Taves, Deputy News Editor

Research team uses nanotechnology to deliver targeted cancer treatment

Alberta | Posted on March 9th, 2010

The group, led by Afsaneh Lavasanifar, an associate professor in the Faculty of Pharmacy, is working on a nanoparticle that boost the human body's immune system in its fight against tumours.

"Usually, the immune system of the body should recognize them and basically destroy the cancer cells. But in some cases, because of separate mutations that happen in cancer cells, they make themselves resistant to the effect of the immune cells," Lavasanifar explained.

The developers have created a nanoparticle that is bound with antigens, which are biological molecules that are taken in by cells that help immunity.

"We also load other materials that are called adjuvants and they are supposed to boost the immune response. Then together they are being captured, because their size is optimum for uptake by immune cells," Lavasanifar said. "One of the most important of these cells are dendritic cells. Dendritic cells can engulf antigens, and then they basically order other cells of the immune system what to do."

Lavasanifar added that this treatment can also boost the effectiveness of chemotherapy.

"Another goal we have in my research group is to target chemotherapy drugs towards the cancer cells. The long-term objective of our research group is to combine the two, chemo and immunotherapy, to get better response from both of them. We believe that combing the two approaches will lead to the eradication of the cancer [cells] and the removal of the tumour," she said.

This targeted approach can have many benefits.

"These materials are supposed to lower the dose of chemotherapy that is received by the patients. Overall, they may be cost effective because you need a smaller dose of the drug. And then you don't need to deal with the side effects of the drugs," Lavasanifar said, citing the toll standard chemotherapy procedures can have on the body.

She explained how changing the types of antigens can allow different types of cancer to be treated. One of the group's research focuses hits especially close to home, as the professor of pharmacy who started work on this project, John Samuel, succumbed to cancer at the age of 53 in 2007.

"We are trying to target the cancers that are hard to treat right now. One of those types of cancers is pancreatic cancer, for example. Another one is head and neck cancer — unfortunately, that is the type of cancer that Dr. Samuel actually passed away from," Lavasanifar noted. "He asked me to take over his staff and research program."

Aiming at different types of cells requires modification of the size and surface properties of the nanoparticles.

"If we want to target a tumour, than we have to look at a different size. We have to go below 100 nanometres," Lavasanifar explained. "By doing that, we make these nanoparticles not be recognized by the immune cells so they are not being taken up very rapidly. Then they have a chance to accumulate in the tumour."

However, Lavasanifar noted that clinical trials of the technology haven't been as promising as hoped, and obstacles remain ahead.

"People think that one of the challenges is the immune tolerance that the body develops during cancer's progression. So one of the challenges is to break the tolerance of the body against this cancer vaccine. That is one area we're doing research on," she said.

Another obstacle is the cost of such intricate treatment, but Lavasanifar is optimistic that will decrease.

"As we move along, maybe we'll find better ways to optimize these products," she said. "It's quite costly compared to what is already there, but if they are more effective for a disease like cancer, that's what we have to do."

####

About University of Alberta
The University of Alberta’s vision since its inception more than 100 years ago has been to be one of the world’s great universities for the public good. In the words of our first president, Henry Marshall Tory, the U of A is an institution directed toward the “uplifting of the whole people” in Alberta, across Canada, and around the world. This vision endures in the university’s current vision document, Dare to Discover, and our academic plan, Dare to Deliver.

For more information, please click here

Copyright © University of Alberta

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Possible Futures

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Nanobiotechnology

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project