Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Research team uses nanotechnology to deliver targeted cancer treatment

On Target: Lavasanifar (left) and fellow researcher Samar Hamdy are developing complex nanoparticles that range from 100 to 500 nanometres in size.  Photo by Pete Yee
On Target: Lavasanifar (left) and fellow researcher Samar Hamdy are developing complex nanoparticles that range from 100 to 500 nanometres in size. Photo by Pete Yee

Abstract:
A team of researchers at the University of Alberta are using tiny technology for a big purpose — the improvement of cancer treatment.

By Jonathan Taves, Deputy News Editor

Research team uses nanotechnology to deliver targeted cancer treatment

Alberta | Posted on March 9th, 2010

The group, led by Afsaneh Lavasanifar, an associate professor in the Faculty of Pharmacy, is working on a nanoparticle that boost the human body's immune system in its fight against tumours.

"Usually, the immune system of the body should recognize them and basically destroy the cancer cells. But in some cases, because of separate mutations that happen in cancer cells, they make themselves resistant to the effect of the immune cells," Lavasanifar explained.

The developers have created a nanoparticle that is bound with antigens, which are biological molecules that are taken in by cells that help immunity.

"We also load other materials that are called adjuvants and they are supposed to boost the immune response. Then together they are being captured, because their size is optimum for uptake by immune cells," Lavasanifar said. "One of the most important of these cells are dendritic cells. Dendritic cells can engulf antigens, and then they basically order other cells of the immune system what to do."

Lavasanifar added that this treatment can also boost the effectiveness of chemotherapy.

"Another goal we have in my research group is to target chemotherapy drugs towards the cancer cells. The long-term objective of our research group is to combine the two, chemo and immunotherapy, to get better response from both of them. We believe that combing the two approaches will lead to the eradication of the cancer [cells] and the removal of the tumour," she said.

This targeted approach can have many benefits.

"These materials are supposed to lower the dose of chemotherapy that is received by the patients. Overall, they may be cost effective because you need a smaller dose of the drug. And then you don't need to deal with the side effects of the drugs," Lavasanifar said, citing the toll standard chemotherapy procedures can have on the body.

She explained how changing the types of antigens can allow different types of cancer to be treated. One of the group's research focuses hits especially close to home, as the professor of pharmacy who started work on this project, John Samuel, succumbed to cancer at the age of 53 in 2007.

"We are trying to target the cancers that are hard to treat right now. One of those types of cancers is pancreatic cancer, for example. Another one is head and neck cancer — unfortunately, that is the type of cancer that Dr. Samuel actually passed away from," Lavasanifar noted. "He asked me to take over his staff and research program."

Aiming at different types of cells requires modification of the size and surface properties of the nanoparticles.

"If we want to target a tumour, than we have to look at a different size. We have to go below 100 nanometres," Lavasanifar explained. "By doing that, we make these nanoparticles not be recognized by the immune cells so they are not being taken up very rapidly. Then they have a chance to accumulate in the tumour."

However, Lavasanifar noted that clinical trials of the technology haven't been as promising as hoped, and obstacles remain ahead.

"People think that one of the challenges is the immune tolerance that the body develops during cancer's progression. So one of the challenges is to break the tolerance of the body against this cancer vaccine. That is one area we're doing research on," she said.

Another obstacle is the cost of such intricate treatment, but Lavasanifar is optimistic that will decrease.

"As we move along, maybe we'll find better ways to optimize these products," she said. "It's quite costly compared to what is already there, but if they are more effective for a disease like cancer, that's what we have to do."

####

About University of Alberta
The University of Alberta’s vision since its inception more than 100 years ago has been to be one of the world’s great universities for the public good. In the words of our first president, Henry Marshall Tory, the U of A is an institution directed toward the “uplifting of the whole people” in Alberta, across Canada, and around the world. This vision endures in the university’s current vision document, Dare to Discover, and our academic plan, Dare to Deliver.

For more information, please click here

Copyright © University of Alberta

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Nanomedicine

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Nanoscience makes your wine better September 17th, 2014

Announcements

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Nanobiotechnology

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

NanoStruck has a High Recovery Rate on Mine Tailings: retrieval of up to 96% of Gold, 88% of Silver and 86% of Palladium September 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE