Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano-Engineered Platinum Catalyst Layers for Fuel Cells

Abstract:
Project funded by Technology Strategy Board

Nano-Engineered Platinum Catalyst Layers for Fuel Cells

UK | Posted on March 9th, 2010

A £1.1 million project aimed at creating new platinum based catalyst layer designs for fuel cells has been awarded funding by the Technology Strategy Board. Johnson Matthey Fuel Cells Ltd is leading the NECLASS project (Nano-Engineered Catalyst Layers and Sub-Structures), and together with partners Qudos Technology Ltd, Teer Coatings Ltd and Thomas Swan & Co. Ltd, is developing novel micro-and nano-structured materials to enable a significantly increased oxygen reduction mass activity of platinum within the fuel cell catalyst layers. Effective use of the precious metal platinum in the catalyst layers is one of the keys to unlocking the widespread commercialisation of the more energy efficient fuel cell power generation technology.

Qudos Technology is investigating micro-scale templating of catalyst layers and interfaces to increase the interfacial area and the access and egress of the reactants and products to the active layer, whereas at the nano-scale Teer Coatings is developing thin conformal Pt coatings onto carbon particulate and fibre materials by physical vapour deposition. Thomas Swan is studying the surface functionalisation of carbon nanotubes for application as the catalyst support in the catalyst layer. Johnson Matthey Fuel Cells will integrate these complementary developments into membrane electrode assemblies (MEAs) and test them in practical fuel cells.

####

About Technology Strategy Board
The Technology Strategy Board is a business-led executive non-departmental public body, established by the government. Its role is to promote and support research into, and development and exploitation of, technology and innovation for the benefit of UK business, in order to increase economic growth and improve the quality of life. It is sponsored by the Department for Business, Innovation and Skills (BIS). For further information please visit
www.innovateuk.org

About Johnson Matthey Fuel Cells (JMFC)
Johnson Matthey Fuel Cells is a subsidiary of Johnson Matthey plc, the speciality chemicals company and world leader in advanced materials technology. JMFC is a leading developer, manufacturer and supplier of fuel cell catalysts, membrane electrode assemblies and other catalysed components to fuel cell developers worldwide. Headquartered at Swindon in the UK, JMFC is capable of researching and fabricating a wide range of developmental and productionscale MEAs.

About Qudos Technology Ltd.
Qudos Technology Ltd is a leading UK research and development company specialising in micro and nano-scale technologies. Highly innovative, the company has been based at Rutherford Appleton Laboratory since 1992. In 2006, Qudos was designated as a National Prototype Facility; the company continues to give UK and international customers the means to develop device concepts, produce prototypes and to set up production. A highly skilled, experienced team of process engineers are able to perform simple processes like deposition right through to advanced techniques such as nano-imprint, grey-scale masks and advanced etching.

Qudos Technology’s role in the NECLASS project is to perform the prototype manufacture of the micro and nano scale tooling required to enable templated catalyst layer and membrane fabrication.

Teer Coatings Ltd. (TCL)
Teer Coatings Ltd was founded in 1982 and specialises in thin film physical vapour deposition (PVD), providing an industrial coating service, coating and associated test equipment to a world wide customer base. The company also invests heavily in R&D to maintain its technological leadership in this field. TCL has continued to grow its business and relocated to larger, fully refurbished premises in 2004. The company has achieved ISO9001:2008 certification for its Quality Management System.

TCL now has a workforce of 57 people and a typical turnover around £4-5M pa, of which equipment sales typically contribute 50% or more. There is a high proportion of export sales.

TCL’s role in NECLASS is to develop systems and PVD methodologies for the “nano” coating of porous substrates, fine particulates and carbon nanotubes.

Thomas Swan & Co. Ltd.
Thomas Swan is one of the largest family owned chemical companies in the UK. It was founded by “Tommy Swan” in 1926 and has been managed by four generations of the Swan family, and as such has been independent for over 80 years. Thomas Swan specialises in Performance and Speciality chemicals, has a turnover of ~£17M with 120 employees and has offices in the UK, USA and China. Between 2001 and 2004, in association with the University of Cambridge, Thomas Swan developed a manufacturing process for single and multi-wall carbon nanotubes. Further work with the University of Oxford focused on purification and dispersion of the nanotubes, and the product was launched under the
Elicarb® brand name in April 2004.

Thomas Swan’s role in the NECLASS project is to design, manufacture, purify and functionalise an ideal and optimised carbon nanotube for use as the catalyst support in fuel cells.

For more information, please click here

Contacts:
David W. Spragg
Orchard Resourcebase Ltd
9 Chapel Street, Thirsk
N. Yorks Y07 1LU, UK
DL +44 (0)1845 573241
T +44 (0)1845 527766
F +44 (0)1845 527744

Copyright © Technology Strategy Board

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

Chemistry

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Nanotubes/Buckyballs/Fullerenes

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Announcements

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Fuel Cells

Expanding the reach of metallic glass April 22nd, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

Research could usher in next generation of batteries, fuel cells University of South Carolina and Clemson reseachers uncover clean interfaces April 10th, 2015

Alliances/Partnerships/Distributorships

How can you see an atom? (video) April 10th, 2015

FibeRio and VF Corporation Form Strategic Partnership to Lead the Apparel and Footwear Markets in Nanofiber Technology April 8th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project