Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-Engineered Platinum Catalyst Layers for Fuel Cells

Abstract:
Project funded by Technology Strategy Board

Nano-Engineered Platinum Catalyst Layers for Fuel Cells

UK | Posted on March 9th, 2010

A £1.1 million project aimed at creating new platinum based catalyst layer designs for fuel cells has been awarded funding by the Technology Strategy Board. Johnson Matthey Fuel Cells Ltd is leading the NECLASS project (Nano-Engineered Catalyst Layers and Sub-Structures), and together with partners Qudos Technology Ltd, Teer Coatings Ltd and Thomas Swan & Co. Ltd, is developing novel micro-and nano-structured materials to enable a significantly increased oxygen reduction mass activity of platinum within the fuel cell catalyst layers. Effective use of the precious metal platinum in the catalyst layers is one of the keys to unlocking the widespread commercialisation of the more energy efficient fuel cell power generation technology.

Qudos Technology is investigating micro-scale templating of catalyst layers and interfaces to increase the interfacial area and the access and egress of the reactants and products to the active layer, whereas at the nano-scale Teer Coatings is developing thin conformal Pt coatings onto carbon particulate and fibre materials by physical vapour deposition. Thomas Swan is studying the surface functionalisation of carbon nanotubes for application as the catalyst support in the catalyst layer. Johnson Matthey Fuel Cells will integrate these complementary developments into membrane electrode assemblies (MEAs) and test them in practical fuel cells.

####

About Technology Strategy Board
The Technology Strategy Board is a business-led executive non-departmental public body, established by the government. Its role is to promote and support research into, and development and exploitation of, technology and innovation for the benefit of UK business, in order to increase economic growth and improve the quality of life. It is sponsored by the Department for Business, Innovation and Skills (BIS). For further information please visit
www.innovateuk.org

About Johnson Matthey Fuel Cells (JMFC)
Johnson Matthey Fuel Cells is a subsidiary of Johnson Matthey plc, the speciality chemicals company and world leader in advanced materials technology. JMFC is a leading developer, manufacturer and supplier of fuel cell catalysts, membrane electrode assemblies and other catalysed components to fuel cell developers worldwide. Headquartered at Swindon in the UK, JMFC is capable of researching and fabricating a wide range of developmental and productionscale MEAs.

About Qudos Technology Ltd.
Qudos Technology Ltd is a leading UK research and development company specialising in micro and nano-scale technologies. Highly innovative, the company has been based at Rutherford Appleton Laboratory since 1992. In 2006, Qudos was designated as a National Prototype Facility; the company continues to give UK and international customers the means to develop device concepts, produce prototypes and to set up production. A highly skilled, experienced team of process engineers are able to perform simple processes like deposition right through to advanced techniques such as nano-imprint, grey-scale masks and advanced etching.

Qudos Technology’s role in the NECLASS project is to perform the prototype manufacture of the micro and nano scale tooling required to enable templated catalyst layer and membrane fabrication.

Teer Coatings Ltd. (TCL)
Teer Coatings Ltd was founded in 1982 and specialises in thin film physical vapour deposition (PVD), providing an industrial coating service, coating and associated test equipment to a world wide customer base. The company also invests heavily in R&D to maintain its technological leadership in this field. TCL has continued to grow its business and relocated to larger, fully refurbished premises in 2004. The company has achieved ISO9001:2008 certification for its Quality Management System.

TCL now has a workforce of 57 people and a typical turnover around £4-5M pa, of which equipment sales typically contribute 50% or more. There is a high proportion of export sales.

TCL’s role in NECLASS is to develop systems and PVD methodologies for the “nano” coating of porous substrates, fine particulates and carbon nanotubes.

Thomas Swan & Co. Ltd.
Thomas Swan is one of the largest family owned chemical companies in the UK. It was founded by “Tommy Swan” in 1926 and has been managed by four generations of the Swan family, and as such has been independent for over 80 years. Thomas Swan specialises in Performance and Speciality chemicals, has a turnover of ~£17M with 120 employees and has offices in the UK, USA and China. Between 2001 and 2004, in association with the University of Cambridge, Thomas Swan developed a manufacturing process for single and multi-wall carbon nanotubes. Further work with the University of Oxford focused on purification and dispersion of the nanotubes, and the product was launched under the
Elicarb® brand name in April 2004.

Thomas Swan’s role in the NECLASS project is to design, manufacture, purify and functionalise an ideal and optimised carbon nanotube for use as the catalyst support in fuel cells.

For more information, please click here

Contacts:
David W. Spragg
Orchard Resourcebase Ltd
9 Chapel Street, Thirsk
N. Yorks Y07 1LU, UK
DL +44 (0)1845 573241
T +44 (0)1845 527766
F +44 (0)1845 527744

Copyright © Technology Strategy Board

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Chemistry

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Nanotubes/Buckyballs/Fullerenes

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Self-healable battery Lithium ion battery for electronic textiles grows back together after breaking October 20th, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Fuel Cells

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Iowa State engineers treat printed graphene with lasers to enable paper electronics September 2nd, 2016

Alliances/Trade associations/Partnerships/Distributorships

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Arrowhead and Spring Bank Announce Clinical Collaboration for ARC-520 and SB 9200 in Chronic Hepatitis B October 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project