Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > On the way to a quantum computer

Andreas Wallraff and his postdoc Stefan Filipp in front of the equipment, with which they want to link electronic quantum mechanical systems with atomic quantum mechanical systems. (Image: P. Rüegg/ETH Zürich)
Andreas Wallraff and his postdoc Stefan Filipp in front of the equipment, with which they want to link electronic quantum mechanical systems with atomic quantum mechanical systems. (Image: P. Rüegg/ETH Zürich)

Abstract:
The hybrid of microelectronic circuits and atoms which combines the best quantum mechanical characteristics of both systems, may help to realize a breakthrough in quantum computing. Not only Andreas Wallraff believes this, but also the European Research Council, which has been supporting his project for five years with almost two million Euros.

On the way to a quantum computer

Zurich | Posted on March 8th, 2010

The thirty eight year-old Andreas Wallraff, Professor for Solid State Physics at ETH Zurich, together with his research group is investigating how atoms can communicate in a controlled manner with an electronic circuit. A 1.9 million Euro research grant from the "ERC Independent Researcher Starting Grants" (see ETH Life from 5.08.2009) is allowing him and his team to extend their area of research. So far Wallraff, who moved from Yale University to ETH Zurich in 2006, has primarily been researching quantum mechanical effects in electronic microcircuits. For example, they send photons from one part of the chip to another and observe how they interact with each other.

Goldplated interior

Now the scientists want to connect their electronic quantum mechanical systems to atomic quantum mechanical systems. In order to do so, a new lab is being built in the basement of the laboratory for solid state physics with specially developed equipment. The interior of the equipment, which is gold-plated in places, almost looks like a work of art. With it the quantum mechanical characteristics and effects of atoms and microelectronic circuits are intended to be brought into an optimal interaction. This method is one of several approaches for developing the hardware of a quantum computer, on which multiple logical operations can be carried out simultaneously on so-called quantum bits or qubits. In contrast to a classical computer, which only works with states 0 and 1 and where the computing operations are run in sequence on the bit, in a quantum computer the state of the qubits can be in superposition and accelerate complex computing operations.

The goal of the scientists on Wallraff's team is primarily to find out how information is written onto a quantum bit, how it can be read out again and how information is transferred. The initial aim is to develop basic components, on which quantum information can be stored for as long as possible and on the other hand it is possible to move between the components quickly and easily.

A versatile connection

Their chip with microelectronic circuits works with the quantum mechanical characteristics of photons instead of transistors. In spite of the high clock speed of the circuit, the time available for processing quantum information with this type of qubit is very short, as the information stored is currently lost within just a few micro seconds, explains Wallraff. Although the time for atomic qubits at up to one second is much longer, the clock frequency currently achievable is a thousand times slower. By connecting both systems, researchers now wish to combine the advantages of the electronic and atomic systems: This combination is the cornerstone of the quantum computer of the Wallraff group.

In Frédéric Merkt, Professor for Physical Chemistry at ETH Zurich, Wallraff has found the ideal partner for the new area of research he is creating. One of his research areas is concerned with Rydberg atoms. They are ideally suited for the atomic processing of quantum information, as they have a diameter which is some 1,000 to 10,000 times larger than a normal atom. As a result they are well suited for interacting with the photons of the electronic circuit.

Letting photons and atoms communicate

Combining both systems - which by themselves are extremely complex - is a real challenge. For example, the chip has to be produced from superconducting material, so that the information stored on it is retained for as long as possible. In addition thermal photons that are present at room temperature also have to be eliminated. Therefore, the chip must be cooled almost to absolute zero, just a few hundred thousandths of a degree above minus 273 degrees Celsius, which is realized using a specially developed cooling system.

Individual photons are created on the microchip. An electromagnetic resonator circuit prevents them from flying off at the speed of light, before they interact with Rydberg atoms, which are guided over the chip. The Rydberg atom is intended to act as a qubit and be switched from state 0 to 1 and vice versa by the photon. The researchers are really excited about the results of this arrangement regarding how and whether the atom and photon will interact with each other. In any case, the aim is that the atoms communicate with the electrical circuit. "Only once we know how it works, can we begin to transfer information between the two qubit systems", says Wallraff.

Extensive knowledge

Realizing a universally working quantum computer still seems a long way off. Wallraff, however, is optimistic and is expecting rapid progress in the development of such a computer. He is, however, certain that his project will not only advance the development of quantum processors, but that it will also make important contributions to the fundamental understanding of the interaction between atoms and solids.

####

About ETH Zurich
ETH Zurich is a science and technology university with an outstanding research record.

ETH Zurich is the study, research and work place of 20,000 people from 80 nations. About 370 professors in 16 departments teach mainly in the engineering sciences and architecture, system-oriented sciences, mathematics and natural sciences areas and carry out research that is highly valued worldwide.

As an internationally oriented institution of higher education and a nationally grounded one this forward-looking task is fulfilled in service to the Swiss nation.

Twenty-one Nobel Laureates are connected with ETH Zurich. Maintaining and developing its top standing in the international competition among top universities is an important task of ETH Zurich.

For more information, please click here

Contacts:
ETH Zurich
Main building
Rämistrasse 101
8092 Zurich
Switzerland
Phone: +41 44 632 1111
Fax: +41 44 632 1010

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

NEMS

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Columbia engineers make world's smallest FM radio transmitter: Team demonstrates new application of graphene using positive feedback November 18th, 2013

Revisiting quantum effects in MEMS: New calculations shows that the influence of quantum effects on the operating conditions of nanodevices has, until now, been overestimated November 15th, 2013

Govt.-Legislation/Regulation/Funding/Policy

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Chip Technology

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Quantum Computing

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Quantum nanoscience

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE