Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > On the way to a quantum computer

Andreas Wallraff and his postdoc Stefan Filipp in front of the equipment, with which they want to link electronic quantum mechanical systems with atomic quantum mechanical systems. (Image: P. Rüegg/ETH Zürich)
Andreas Wallraff and his postdoc Stefan Filipp in front of the equipment, with which they want to link electronic quantum mechanical systems with atomic quantum mechanical systems. (Image: P. Rüegg/ETH Zürich)

Abstract:
The hybrid of microelectronic circuits and atoms which combines the best quantum mechanical characteristics of both systems, may help to realize a breakthrough in quantum computing. Not only Andreas Wallraff believes this, but also the European Research Council, which has been supporting his project for five years with almost two million Euros.

On the way to a quantum computer

Zurich | Posted on March 8th, 2010

The thirty eight year-old Andreas Wallraff, Professor for Solid State Physics at ETH Zurich, together with his research group is investigating how atoms can communicate in a controlled manner with an electronic circuit. A 1.9 million Euro research grant from the "ERC Independent Researcher Starting Grants" (see ETH Life from 5.08.2009) is allowing him and his team to extend their area of research. So far Wallraff, who moved from Yale University to ETH Zurich in 2006, has primarily been researching quantum mechanical effects in electronic microcircuits. For example, they send photons from one part of the chip to another and observe how they interact with each other.

Goldplated interior

Now the scientists want to connect their electronic quantum mechanical systems to atomic quantum mechanical systems. In order to do so, a new lab is being built in the basement of the laboratory for solid state physics with specially developed equipment. The interior of the equipment, which is gold-plated in places, almost looks like a work of art. With it the quantum mechanical characteristics and effects of atoms and microelectronic circuits are intended to be brought into an optimal interaction. This method is one of several approaches for developing the hardware of a quantum computer, on which multiple logical operations can be carried out simultaneously on so-called quantum bits or qubits. In contrast to a classical computer, which only works with states 0 and 1 and where the computing operations are run in sequence on the bit, in a quantum computer the state of the qubits can be in superposition and accelerate complex computing operations.

The goal of the scientists on Wallraff's team is primarily to find out how information is written onto a quantum bit, how it can be read out again and how information is transferred. The initial aim is to develop basic components, on which quantum information can be stored for as long as possible and on the other hand it is possible to move between the components quickly and easily.

A versatile connection

Their chip with microelectronic circuits works with the quantum mechanical characteristics of photons instead of transistors. In spite of the high clock speed of the circuit, the time available for processing quantum information with this type of qubit is very short, as the information stored is currently lost within just a few micro seconds, explains Wallraff. Although the time for atomic qubits at up to one second is much longer, the clock frequency currently achievable is a thousand times slower. By connecting both systems, researchers now wish to combine the advantages of the electronic and atomic systems: This combination is the cornerstone of the quantum computer of the Wallraff group.

In Frédéric Merkt, Professor for Physical Chemistry at ETH Zurich, Wallraff has found the ideal partner for the new area of research he is creating. One of his research areas is concerned with Rydberg atoms. They are ideally suited for the atomic processing of quantum information, as they have a diameter which is some 1,000 to 10,000 times larger than a normal atom. As a result they are well suited for interacting with the photons of the electronic circuit.

Letting photons and atoms communicate

Combining both systems - which by themselves are extremely complex - is a real challenge. For example, the chip has to be produced from superconducting material, so that the information stored on it is retained for as long as possible. In addition thermal photons that are present at room temperature also have to be eliminated. Therefore, the chip must be cooled almost to absolute zero, just a few hundred thousandths of a degree above minus 273 degrees Celsius, which is realized using a specially developed cooling system.

Individual photons are created on the microchip. An electromagnetic resonator circuit prevents them from flying off at the speed of light, before they interact with Rydberg atoms, which are guided over the chip. The Rydberg atom is intended to act as a qubit and be switched from state 0 to 1 and vice versa by the photon. The researchers are really excited about the results of this arrangement regarding how and whether the atom and photon will interact with each other. In any case, the aim is that the atoms communicate with the electrical circuit. "Only once we know how it works, can we begin to transfer information between the two qubit systems", says Wallraff.

Extensive knowledge

Realizing a universally working quantum computer still seems a long way off. Wallraff, however, is optimistic and is expecting rapid progress in the development of such a computer. He is, however, certain that his project will not only advance the development of quantum processors, but that it will also make important contributions to the fundamental understanding of the interaction between atoms and solids.

####

About ETH Zurich
ETH Zurich is a science and technology university with an outstanding research record.

ETH Zurich is the study, research and work place of 20,000 people from 80 nations. About 370 professors in 16 departments teach mainly in the engineering sciences and architecture, system-oriented sciences, mathematics and natural sciences areas and carry out research that is highly valued worldwide.

As an internationally oriented institution of higher education and a nationally grounded one this forward-looking task is fulfilled in service to the Swiss nation.

Twenty-one Nobel Laureates are connected with ETH Zurich. Maintaining and developing its top standing in the international competition among top universities is an important task of ETH Zurich.

For more information, please click here

Contacts:
ETH Zurich
Main building
Rämistrasse 101
8092 Zurich
Switzerland
Phone: +41 44 632 1111
Fax: +41 44 632 1010

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

NEMS

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Chip Technology

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Quantum Computing

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Nanoelectronics

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Announcements

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Quantum nanoscience

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Scientists set traps for atoms with single-particle precision: Technique may enable large-scale atom arrays for quantum computing November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project