Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Baolab creates nanoscale MEMS inside the CMOS wafer

Abstract:
Uses standard CMOS technologies and lines to slash MEMS costs by up to two thirds

Baolab creates nanoscale MEMS inside the CMOS wafer

Barcelona, Spain | Posted on March 8th, 2010

Baolab Microsystems has announced a new technology to construct nanoscale MEMS (Micro Electro Mechanical Systems) within the structure of the actual CMOS wafer itself using standard, high volume CMOS lines, which is much easier and quicker with fewer process steps than existing MEMS fabrication techniques that build the MEMS on the surface of the wafer. This significantly reduces the costs of a MEMS by up to two thirds and even more if several different MEMS are created together on the same chip.

The Baolab NanoEMS™ technology uses the existing metal layers in a CMOS wafer to form the MEMS structure using standard mask techniques. The Inter Metal Dielectric (IMD) is then etched away through the pad openings in the passivation layer using vHF (vapour HF). The etching uses equipment that is already available for volume production and takes less than an hour, which is insignificant compared to the overall production time. The holes are then sealed and the chip packaged as required. As only standard CMOS processes are used, NanoEMS MEMS can be directly integrated with active circuitry as required.

"We have solved the challenge of building MEMS in a completely different way," explained Dave Doyle, Baolab's CEO. "Existing MEMS technologies are slow, expensive and require specialist equipment. They have to be either built on top of the wafer at a post production stage or into a recess in the wafer. By contrast, our new NanoEMS technology enables MEMS to be built using standard CMOS technologies during the normal flow of the CMOS lines."

Baolab has successfully created MEMS devices using standard 0.18um 8" volume CMOS wafers with four or more metal layers, and has achieved minimum feature sizes down to 200 nanometres. This is an order of magnitude smaller than is currently possible with conventional MEMS devices, bringing the new NanoEMS MEMS into the realm of nanostructures, with the additional benefits of smaller sizes, lower power consumption and faster devices.

Baolab will be making a range of discrete MEMS including RF switches, electronic compasses and accelerometers, along with solutions that combine several functions in one chip. The prototype stage has already proved the NanoEMS technology and evaluation samples will be available later this year. These are aimed at handset designers and manufacturers, and Power Amplifier and RF Front End Module markets.

NanoEMS is a trademark of Baolab Microsystems, S.L.

####

About Baolab Microsystems
Baolab Microsystems, S.L. was founded in July 2003 with headquarters near Barcelona, Spain. Our multi-national team consists of experts in semiconductor processing, physics, and RF design, with a strong background in the wireless communication industry. We are devoted to the design and commercialization of products based on our patented Micro Relay technologies.

For more information, please click here

Contacts:
Baolab Microsystems


Institut Politècnic del Campus de Terrassa, 08220 Terrassa, Spain.
Tel.: +34-93-394-17-70

Press contact for interviews and illustrations is Nigel Robson, Vortex PR. Tel: +44 1481 233080

Copyright © Baolab Microsystems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

NEMS

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

Nanodevices at one-hundredth the cost: New techniques for building microelectromechanical systems show promise December 20th, 2015

Nano-mechanical study offers new assessment of silicon for next-gen batteries September 25th, 2015

MEMS

New research unveils graphene 'moth eyes' to power future smart technologies: New ultra-thin, patterned graphene sheets will be essential in designing future technologies such as 'smart wallpaper' and Internet-of-things applications March 1st, 2016

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

MEMS & Sensors Industry Group Previews “Internet of MEMS & Sensors” at CES 2016 -- Global industry association invites CE OEMS/integrators to conference track on January 7 January 6th, 2016

SITRI and Accelink Announce Cooperative Agreement on Opto-Electronic Communication December 31st, 2015

Chip Technology

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Announcements

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic