Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Baolab creates nanoscale MEMS inside the CMOS wafer

Abstract:
Uses standard CMOS technologies and lines to slash MEMS costs by up to two thirds

Baolab creates nanoscale MEMS inside the CMOS wafer

Barcelona, Spain | Posted on March 8th, 2010

Baolab Microsystems has announced a new technology to construct nanoscale MEMS (Micro Electro Mechanical Systems) within the structure of the actual CMOS wafer itself using standard, high volume CMOS lines, which is much easier and quicker with fewer process steps than existing MEMS fabrication techniques that build the MEMS on the surface of the wafer. This significantly reduces the costs of a MEMS by up to two thirds and even more if several different MEMS are created together on the same chip.

The Baolab NanoEMS™ technology uses the existing metal layers in a CMOS wafer to form the MEMS structure using standard mask techniques. The Inter Metal Dielectric (IMD) is then etched away through the pad openings in the passivation layer using vHF (vapour HF). The etching uses equipment that is already available for volume production and takes less than an hour, which is insignificant compared to the overall production time. The holes are then sealed and the chip packaged as required. As only standard CMOS processes are used, NanoEMS MEMS can be directly integrated with active circuitry as required.

"We have solved the challenge of building MEMS in a completely different way," explained Dave Doyle, Baolab's CEO. "Existing MEMS technologies are slow, expensive and require specialist equipment. They have to be either built on top of the wafer at a post production stage or into a recess in the wafer. By contrast, our new NanoEMS technology enables MEMS to be built using standard CMOS technologies during the normal flow of the CMOS lines."

Baolab has successfully created MEMS devices using standard 0.18um 8" volume CMOS wafers with four or more metal layers, and has achieved minimum feature sizes down to 200 nanometres. This is an order of magnitude smaller than is currently possible with conventional MEMS devices, bringing the new NanoEMS MEMS into the realm of nanostructures, with the additional benefits of smaller sizes, lower power consumption and faster devices.

Baolab will be making a range of discrete MEMS including RF switches, electronic compasses and accelerometers, along with solutions that combine several functions in one chip. The prototype stage has already proved the NanoEMS technology and evaluation samples will be available later this year. These are aimed at handset designers and manufacturers, and Power Amplifier and RF Front End Module markets.

NanoEMS is a trademark of Baolab Microsystems, S.L.

####

About Baolab Microsystems
Baolab Microsystems, S.L. was founded in July 2003 with headquarters near Barcelona, Spain. Our multi-national team consists of experts in semiconductor processing, physics, and RF design, with a strong background in the wireless communication industry. We are devoted to the design and commercialization of products based on our patented Micro Relay technologies.

For more information, please click here

Contacts:
Baolab Microsystems


Institut Politčcnic del Campus de Terrassa, 08220 Terrassa, Spain.
Tel.: +34-93-394-17-70

Press contact for interviews and illustrations is Nigel Robson, Vortex PR. Tel: +44 1481 233080

Copyright © Baolab Microsystems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

NEMS

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

MEMS

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

Manufacturing platform makes intricate biocompatible micromachines January 7th, 2017

Chip Technology

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Nanoelectronics

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project