Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Baolab creates nanoscale MEMS inside the CMOS wafer

Abstract:
Uses standard CMOS technologies and lines to slash MEMS costs by up to two thirds

Baolab creates nanoscale MEMS inside the CMOS wafer

Barcelona, Spain | Posted on March 8th, 2010

Baolab Microsystems has announced a new technology to construct nanoscale MEMS (Micro Electro Mechanical Systems) within the structure of the actual CMOS wafer itself using standard, high volume CMOS lines, which is much easier and quicker with fewer process steps than existing MEMS fabrication techniques that build the MEMS on the surface of the wafer. This significantly reduces the costs of a MEMS by up to two thirds and even more if several different MEMS are created together on the same chip.

The Baolab NanoEMS™ technology uses the existing metal layers in a CMOS wafer to form the MEMS structure using standard mask techniques. The Inter Metal Dielectric (IMD) is then etched away through the pad openings in the passivation layer using vHF (vapour HF). The etching uses equipment that is already available for volume production and takes less than an hour, which is insignificant compared to the overall production time. The holes are then sealed and the chip packaged as required. As only standard CMOS processes are used, NanoEMS MEMS can be directly integrated with active circuitry as required.

"We have solved the challenge of building MEMS in a completely different way," explained Dave Doyle, Baolab's CEO. "Existing MEMS technologies are slow, expensive and require specialist equipment. They have to be either built on top of the wafer at a post production stage or into a recess in the wafer. By contrast, our new NanoEMS technology enables MEMS to be built using standard CMOS technologies during the normal flow of the CMOS lines."

Baolab has successfully created MEMS devices using standard 0.18um 8" volume CMOS wafers with four or more metal layers, and has achieved minimum feature sizes down to 200 nanometres. This is an order of magnitude smaller than is currently possible with conventional MEMS devices, bringing the new NanoEMS MEMS into the realm of nanostructures, with the additional benefits of smaller sizes, lower power consumption and faster devices.

Baolab will be making a range of discrete MEMS including RF switches, electronic compasses and accelerometers, along with solutions that combine several functions in one chip. The prototype stage has already proved the NanoEMS technology and evaluation samples will be available later this year. These are aimed at handset designers and manufacturers, and Power Amplifier and RF Front End Module markets.

NanoEMS is a trademark of Baolab Microsystems, S.L.

####

About Baolab Microsystems
Baolab Microsystems, S.L. was founded in July 2003 with headquarters near Barcelona, Spain. Our multi-national team consists of experts in semiconductor processing, physics, and RF design, with a strong background in the wireless communication industry. We are devoted to the design and commercialization of products based on our patented Micro Relay technologies.

For more information, please click here

Contacts:
Baolab Microsystems


Institut Politècnic del Campus de Terrassa, 08220 Terrassa, Spain.
Tel.: +34-93-394-17-70

Press contact for interviews and illustrations is Nigel Robson, Vortex PR. Tel: +44 1481 233080

Copyright © Baolab Microsystems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

NEMS

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

MEMS

First Capacitive Transducer with 13nm Gap July 27th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Chip Technology

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Nanoelectronics

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project