Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A New Energy Source from the Common Pea

Abstract:
TAU scientists create a solar energy device from a plant protein structure

A New Energy Source from the Common Pea

New York, NY | Posted on March 5th, 2010

If harnessing the unlimited solar power of the sun were easy, we wouldn't still have the greenhouse gas problem that results from the use of fossil fuel. And while solar energy systems work moderately well in hot desert climates, they are still inefficient and contribute only a small percentage of the general energy demand. A new solution may be coming from an unexpected source a source that may be on your dinner plate tonight.

"Looking at the most complicated membrane structure found in a plant, we deciphered a complex membrane protein structure which is the core of our new proposed model for developing 'green' energy," says structural biologist Prof. Nathan Nelson of Tel Aviv University's Department of Biochemistry. Isolating the minute crystals of the PSI super complex from the pea plant, Prof. Nelson suggests these crystals can be illuminated and used as small battery chargers or form the core of more efficient man-made solar cells.

Nanoscience is the science of small particles of materials and is one of the most important research frontiers in modern technology. In nature, positioning of molecules with sub-nanometer precision is routine, and crucial to the operation of biological complexes such as photosynthetic complexes. Prof. Nelson's research concentrates on this aspect.

The mighty PSI

To generate useful energy, plants have evolved very sophisticated "nano-machinery" which operates with light as its energy source and gives a perfect quantum yield of 100%. Called the Photosystem I (PSI) complex, this complex was isolated from pea leaves, crystalized and its crystal structure determined by Prof. Nelson to high resolution, which enabled him to describe in detail its intricate structure.

"My research aims to come close to achieving the energy production that plants can obtain when converting sun to sugars in their green leaves," explains Prof. Nelson.

Described in 1905 by Albert Einstein, quantum physics and photons explained the basic principles of how light energy works. Once light is absorbed in plant leaves, it energizes an electron which is subsequently used to support a biochemical reaction, like sugar production.

"If we could come even close to how plants are manufacturing their sugar energy, we'd have a breakthrough. It's therefore important to solve the structure of this nano-machine to understand its function," says Prof. Nelson, whose lab is laying the foundations for this possibility.

Since the PSI reaction center is a pigment-protein complex responsible for the photosynthetic conversion of light energy to another form of energy like chemical energy, these reaction centers, thousands of which are precisely packed in the crystals, may be used to convert light energy to electricity and serve as electronic components in a variety of different devices.

"One can imagine our amazement and joy when, upon illumination of those crystals placed on gold covered plates, we were able to generate a voltage of 10 volts. This won't solve our world's energy problem, but this could be assembled in power switches for low-power solar needs, for example," he concludes.

####

About American Friends of Tel Aviv University
Tel Aviv University's American Friends are a worldly and intellectually sophisticated group, committed to nurturing higher education and developing Israel's best minds.

For more information, please click here

Contacts:
Barbara Schreibman
Director of Marketing
and Communications

212.742.9060

Copyright © American Friends of Tel Aviv University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Possible Futures

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Announcements

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Environment

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Energy

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

BNAs improve performance of Li-ion batteries June 27th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Solar/Photovoltaic

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project