Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'Nano-foundry' technique yields ultra-durable probes from diamond

Abstract:
When a team of university and industry researchers tried a novel, foundry-style mold-filling technique to make nanoscale devices, they realized they had discovered a gem.

Not only did they pioneer a three-dimensional nanoscale fabrication method, they used the process to make ultra-hard, wear-resistant nanoprobes out of a material similar to diamond.

by Renee Meiller

'Nano-foundry' technique yields ultra-durable probes from diamond

Madison, WI | Posted on March 4th, 2010

On a larger scale, materials that look smooth still abrade because of slight irregularities and defects on their surfaces. However, at the nanoscale, atoms rub off one at a time, creating new challenges for researchers who build devices sometimes just tens of atoms wide.

"The effects of friction are important in nanoscale devices and processes, where surface forces such as friction are increasingly dominant due to the high surface-to-volume ratio," says Kumar Sridharan, a distinguished research professor of engineering physics at the University of Wisconsin-Madison and member of the research team.

The team, which also included researchers from the University of Pennsylvania and IBM Research-Zurich, published details of its research Jan. 31 in the advance online edition of Nature Nanotechnology.

The advance is key because it demonstrates a method for applying, in a three-dimensional nanoscale application, silicon-containing diamondlike carbon, or Si-DLC. In the study, the researchers showed that Si-DLC, which is prized for its low friction and high wear-resistance at the macroscale, also exhibits similar outstanding wear-resistance at the nanoscale.

"It was not clear that materials that are wear-resistant at the macroscale exhibit the same property at the nanoscale," says lead author Harish Bhaskaran, a former IBM researcher who now is a researcher in the Yale University Department of Electrical Engineering.

Developed by Sridharan, the new "nano foundry" technique easily could scale up for commercial manufacturing.

Using an IBM silicon-on-insulator wafer etched with sharp, pyramid-shaped "molds," Sridharan used Si-DLC to fabricate ultrasharp tips, with a 5 nanometer radius, on standard silicon microcantilevers.

Currently, manufacturers etch the tips out of silicon. However, for the new foundry-style method, Sridharan exploited plasma immersion ion implantation and deposition, a room-temperature process previously used for applying, or "depositing," coatings on implanting ions into other materials. "We've always deposited thin films on materials," he says. "We've looked at it as a two-dimensional surface-modification process."

In three dimensions, the technique works somewhat like the way in which a snowfall blankets the ground. In this case, the "snow" is ionized hexamethyl disiloxane, a liquid precursor to Si-DLC that gasifies in the plasma chamber and ultimately packs neatly into the molds on the IBM wafer. "Our process has allowed us to fill a very sharp tip, very accurately," says Sridharan.

Another advantage is that Si-DLC is an amorphous, rather than crystalline, material. If a crystal is too big, the mold will fill irregularly and limit the tip sharpness. However, an amorphous material can slide atom by atom into the mold, filling it completely, like raindrops into a bucket.

In addition to filling the tip molds completely, Si-DLC also coats the entire wafer. The researchers developed a simple, commercially feasible two-step silicon etching process to release the tip and the integrated cantilever from the wafer.

The tips have applications in atomic-force microscopy, data storage and nanofabrication. In wear tests, in which the researchers slid the tips continuously over a silicon dioxide surface for several days, they found the Si-DLC tips were 3,000 times more wear-resistant than silicon tips. "We've taken a material that's good at the macroscale, we fabricate it at the nanoscale, and we show it's wear-resistant at the nanoscale," says Bhaskaran.

Other authors on the Nature Nanotechnology paper include Bernd Gotsmann, Abu Sebastian, Ute Drechsler, Mark A. Lantz, Michel Despont, Papot Jaroenapibal, Robert W. Carpick, and Yun Chen.

####

For more information, please click here

Contacts:
Renee Meiller
(608) 262-2481


Kumar Sridharan
(608) 263-4789


Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Possible Futures

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Memory Technology

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Tools

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Alliances/Trade associations/Partnerships/Distributorships

Thomas Swan and NGI announce unique partnership July 28th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic