Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > 'Nano-foundry' technique yields ultra-durable probes from diamond

Abstract:
When a team of university and industry researchers tried a novel, foundry-style mold-filling technique to make nanoscale devices, they realized they had discovered a gem.

Not only did they pioneer a three-dimensional nanoscale fabrication method, they used the process to make ultra-hard, wear-resistant nanoprobes out of a material similar to diamond.

by Renee Meiller

'Nano-foundry' technique yields ultra-durable probes from diamond

Madison, WI | Posted on March 4th, 2010

On a larger scale, materials that look smooth still abrade because of slight irregularities and defects on their surfaces. However, at the nanoscale, atoms rub off one at a time, creating new challenges for researchers who build devices sometimes just tens of atoms wide.

"The effects of friction are important in nanoscale devices and processes, where surface forces such as friction are increasingly dominant due to the high surface-to-volume ratio," says Kumar Sridharan, a distinguished research professor of engineering physics at the University of Wisconsin-Madison and member of the research team.

The team, which also included researchers from the University of Pennsylvania and IBM Research-Zurich, published details of its research Jan. 31 in the advance online edition of Nature Nanotechnology.

The advance is key because it demonstrates a method for applying, in a three-dimensional nanoscale application, silicon-containing diamondlike carbon, or Si-DLC. In the study, the researchers showed that Si-DLC, which is prized for its low friction and high wear-resistance at the macroscale, also exhibits similar outstanding wear-resistance at the nanoscale.

"It was not clear that materials that are wear-resistant at the macroscale exhibit the same property at the nanoscale," says lead author Harish Bhaskaran, a former IBM researcher who now is a researcher in the Yale University Department of Electrical Engineering.

Developed by Sridharan, the new "nano foundry" technique easily could scale up for commercial manufacturing.

Using an IBM silicon-on-insulator wafer etched with sharp, pyramid-shaped "molds," Sridharan used Si-DLC to fabricate ultrasharp tips, with a 5 nanometer radius, on standard silicon microcantilevers.

Currently, manufacturers etch the tips out of silicon. However, for the new foundry-style method, Sridharan exploited plasma immersion ion implantation and deposition, a room-temperature process previously used for applying, or "depositing," coatings on implanting ions into other materials. "We've always deposited thin films on materials," he says. "We've looked at it as a two-dimensional surface-modification process."

In three dimensions, the technique works somewhat like the way in which a snowfall blankets the ground. In this case, the "snow" is ionized hexamethyl disiloxane, a liquid precursor to Si-DLC that gasifies in the plasma chamber and ultimately packs neatly into the molds on the IBM wafer. "Our process has allowed us to fill a very sharp tip, very accurately," says Sridharan.

Another advantage is that Si-DLC is an amorphous, rather than crystalline, material. If a crystal is too big, the mold will fill irregularly and limit the tip sharpness. However, an amorphous material can slide atom by atom into the mold, filling it completely, like raindrops into a bucket.

In addition to filling the tip molds completely, Si-DLC also coats the entire wafer. The researchers developed a simple, commercially feasible two-step silicon etching process to release the tip and the integrated cantilever from the wafer.

The tips have applications in atomic-force microscopy, data storage and nanofabrication. In wear tests, in which the researchers slid the tips continuously over a silicon dioxide surface for several days, they found the Si-DLC tips were 3,000 times more wear-resistant than silicon tips. "We've taken a material that's good at the macroscale, we fabricate it at the nanoscale, and we show it's wear-resistant at the nanoscale," says Bhaskaran.

Other authors on the Nature Nanotechnology paper include Bernd Gotsmann, Abu Sebastian, Ute Drechsler, Mark A. Lantz, Michel Despont, Papot Jaroenapibal, Robert W. Carpick, and Yun Chen.

####

For more information, please click here

Contacts:
Renee Meiller
(608) 262-2481


Kumar Sridharan
(608) 263-4789


Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

Memory Technology

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Can our computers continue to get smaller and more powerful? University of Michigan computer scientist reviews frontier technologies to determine fundamental limits of computer scaling August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

Immune cells get cancer-fighting boost from nanomaterials August 13th, 2014

Discoveries

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Tools

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Measure Both Elastic and Viscous Properties with AFM Using Asylum Research’s Exclusive AM-FM Viscoelastic Mapping Mode August 28th, 2014

Malvern specialists to deliver inaugural short course on polymer characterization at Interplas 2014 August 27th, 2014

Alliances/Partnerships/Distributorships

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

JPK expands availability of instrumentation in the USA – appointing new distributors – launched a new web site to support the US market - AFM now available to US users August 26th, 2014

Sunblock poses potential hazard to sea life August 20th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE