Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'Nano-foundry' technique yields ultra-durable probes from diamond

Abstract:
When a team of university and industry researchers tried a novel, foundry-style mold-filling technique to make nanoscale devices, they realized they had discovered a gem.

Not only did they pioneer a three-dimensional nanoscale fabrication method, they used the process to make ultra-hard, wear-resistant nanoprobes out of a material similar to diamond.

by Renee Meiller

'Nano-foundry' technique yields ultra-durable probes from diamond

Madison, WI | Posted on March 4th, 2010

On a larger scale, materials that look smooth still abrade because of slight irregularities and defects on their surfaces. However, at the nanoscale, atoms rub off one at a time, creating new challenges for researchers who build devices sometimes just tens of atoms wide.

"The effects of friction are important in nanoscale devices and processes, where surface forces such as friction are increasingly dominant due to the high surface-to-volume ratio," says Kumar Sridharan, a distinguished research professor of engineering physics at the University of Wisconsin-Madison and member of the research team.

The team, which also included researchers from the University of Pennsylvania and IBM Research-Zurich, published details of its research Jan. 31 in the advance online edition of Nature Nanotechnology.

The advance is key because it demonstrates a method for applying, in a three-dimensional nanoscale application, silicon-containing diamondlike carbon, or Si-DLC. In the study, the researchers showed that Si-DLC, which is prized for its low friction and high wear-resistance at the macroscale, also exhibits similar outstanding wear-resistance at the nanoscale.

"It was not clear that materials that are wear-resistant at the macroscale exhibit the same property at the nanoscale," says lead author Harish Bhaskaran, a former IBM researcher who now is a researcher in the Yale University Department of Electrical Engineering.

Developed by Sridharan, the new "nano foundry" technique easily could scale up for commercial manufacturing.

Using an IBM silicon-on-insulator wafer etched with sharp, pyramid-shaped "molds," Sridharan used Si-DLC to fabricate ultrasharp tips, with a 5 nanometer radius, on standard silicon microcantilevers.

Currently, manufacturers etch the tips out of silicon. However, for the new foundry-style method, Sridharan exploited plasma immersion ion implantation and deposition, a room-temperature process previously used for applying, or "depositing," coatings on implanting ions into other materials. "We've always deposited thin films on materials," he says. "We've looked at it as a two-dimensional surface-modification process."

In three dimensions, the technique works somewhat like the way in which a snowfall blankets the ground. In this case, the "snow" is ionized hexamethyl disiloxane, a liquid precursor to Si-DLC that gasifies in the plasma chamber and ultimately packs neatly into the molds on the IBM wafer. "Our process has allowed us to fill a very sharp tip, very accurately," says Sridharan.

Another advantage is that Si-DLC is an amorphous, rather than crystalline, material. If a crystal is too big, the mold will fill irregularly and limit the tip sharpness. However, an amorphous material can slide atom by atom into the mold, filling it completely, like raindrops into a bucket.

In addition to filling the tip molds completely, Si-DLC also coats the entire wafer. The researchers developed a simple, commercially feasible two-step silicon etching process to release the tip and the integrated cantilever from the wafer.

The tips have applications in atomic-force microscopy, data storage and nanofabrication. In wear tests, in which the researchers slid the tips continuously over a silicon dioxide surface for several days, they found the Si-DLC tips were 3,000 times more wear-resistant than silicon tips. "We've taken a material that's good at the macroscale, we fabricate it at the nanoscale, and we show it's wear-resistant at the nanoscale," says Bhaskaran.

Other authors on the Nature Nanotechnology paper include Bernd Gotsmann, Abu Sebastian, Ute Drechsler, Mark A. Lantz, Michel Despont, Papot Jaroenapibal, Robert W. Carpick, and Yun Chen.

####

For more information, please click here

Contacts:
Renee Meiller
(608) 262-2481


Kumar Sridharan
(608) 263-4789


Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Possible Futures

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Academic/Education

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

Memory Technology

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Nanotubes that build themselves April 14th, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tools

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Alliances/Trade associations/Partnerships/Distributorships

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Thought Leaders and Experts Join National Graphene Association Advisory Board June 16th, 2017

Microsoft, Purdue collaborate to advance quantum computing May 30th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project