Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Rice researchers make graphene hybrid

Abstract:
One-atom-thick sheet offers new microelectronic possibilities

Rice researchers make graphene hybrid

Houston, TX | Posted on March 3rd, 2010

Rice University researchers have found a way to stitch graphene and hexagonal boron nitride (h-BN) into a two-dimensional quilt that offers new paths of exploration for materials scientists.

The technique has implications for application of graphene materials in microelectronics that scale well below the limitations of silicon determined by Moore's Law.

New research from the lab of Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry, demonstrates a way to achieve fine control in the creation of such hybrid, 2-D structures.

Layers of h-BN a single atom thick have the same lattice structure as graphene, but electrically the materials are at opposite ends of the spectrum: h-BN is an insulator, whereas graphene, the single-atom-layer form of carbon, is highly conductive. The ability to assemble them into a single lattice could lead to a rich variety of 2-D structures with electric properties ranging from metallic conductor to semiconductor to insulator.

Because graphene is a conductor and h-BN is an insulator, the proportion of one to the other determines how well this new material conducts electrons. Lijie Ci and Li Song, both postdoctoral research scientists in Ajayan's lab, found that by putting down domains of h-BN and carbon via chemical vapor deposition (CVD), they were able to control the ratio of materials in the film that resulted.

Ci and Song are primary authors of a paper about the work that appeared in the online edition of Nature Materials this week.

Ajayan said the discovery is thrilling for a materials scientist.

"From a graphene perspective, it now gives us an opportunity to explore band-gap engineering in two-dimensional layered systems," he said. "The whole phase diagram of boron, carbon and nitrogen is fascinating, unexplored and offers a great playground for materials scientists.

"This is only the first instance showing that these structures can indeed be grown in 2-D like graphene," Ajayan said. "I think the whole new field will be exciting for basic physics and electro-optical applications."

Graphene has been the subject of intense study in recent years for its high conductivity and the possibility of manipulating it on scales that go well below the theoretical limits for silicon circuitry. A layer of graphene is a hexagonal lattice of carbon atoms. In bulk, it's called graphite, the stuff of pencil lead. Graphene was first isolated in 2004 by British scientists who used Scotch tape to pull single-atom layers from graphite.

"Graphene is a very hot material right now," said Song, who had teamed with Ci to investigate doping graphene with various materials to determine its semiconducting properties. Knowing that both boron and nitrogen had already been used in doping bulk graphite, they decided to try cooking it via CVD onto a copper base.

Structurally, h-BN is the same as graphene, a hexagon-shaped lattice of carbon atoms that looks like chicken wire. Ci and Song found that through CVD, graphene and h-BN merged into a single atomic sheet, with pools of h-BN breaking up the carbon matrix.

The critical factor for electronic materials is the band gap, which must be tuned in a controlled manner for applications. Graphene is a zero-gap material, but ways have been proposed to tailor this gap by patterning it into nanoscale strips and doping it with other elements.

Ci and Song took a different approach through CVD, controlling the ratio of carbon to h-BN over a large, useful range.

It remains challenging to produce single layers of the hybrid material, as most lab-grown films contain two or three layers. The researchers also cannot yet control the placement of h-BN pools in a single sheet or the rotational angles between layers - but they're working on it.

In fact, having multiple layers of the hybrid at various angles creates even more possibilities, they said. "For pure graphene, this rotation will affect the electronic properties," said Ci, who moved with Ajayan's lab from Rensselaer Polytechnic Institute to Houston in 2007.

The researchers are considering producing these materials on industrial-scale wafers. Graphene sheets several inches wide have already been synthesized in other labs, Ci said. And because graphene can be lithographically patterned and cut into shapes, the new material has great potential to be fabricated into useful devices with controllable electrical properties.

Co-authors on the paper with Ci, Song and Ajayan are visiting students Deep Jariwala and Yongjie Li and visiting professor Anchal Srivastava, all at Rice; Chuanhong Jin of the Nanotube Research Center, National Institute of Advanced Industrial Science and Technology in Tsukuba, Japan; Dangxin Wu, Z.F. Wang and Feng Liu of the Department of Materials Science and Engineering at the University of Utah; Kevin Storr of the Department of Physics at Prairie View A&M University; and Luis Balicas of the National High Magnetic Field Laboratory in Tallahassee, Fla.

Funding for the research came from Rice, the Office of Naval Research's Multidisciplinary University Research Initiative program on graphene and the Basic Energy Sciences Division of the Department of Energy.

View the paper at: www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2711.html

####

About Rice University
As a leading research university with a distinctive commitment to undergraduate education, Rice University aspires to pathbreaking research, unsurpassed teaching, and contribution to the betterment of our world. It seeks to fulfill this mission by cultivating a diverse community of learning and discovery that produces leaders across the spectrum of human endeavor.

For more information, please click here

Contacts:
Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

SUNY Polytechnic Institute Hosts Massive Crowd of More Than 3,000 People Who Attended Community Day Activities Across New York State: CNSE’s ‘NANOvember’ kickoff event highlights New York State’s growing high-tech sector with open house events in Albany, Utica, and Rochester November 3rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Chip Technology

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Nanoelectronics

Leti Will Present 17 Papers at 2014 IEDM; the Highest-ever Total Includes Four Invited Papers: Institute also Will Present its Latest Results in Key Technologies and Its Roadmap for Silicon Nano-technologies at Workshop November 13th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Materials/Metamaterials

Sustainable Nanotechnologies Project November 20th, 2014

Total Nanofiber Solutions Company FibeRio® Launches The Fiber Engine® FX Series Systems with 10X Increase in Output November 18th, 2014

Nanocomposites Strengthen Bone Implants November 13th, 2014

Production of Magnetic Nanoparticles with New Structures in Iran November 13th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Alliances/Partnerships/Distributorships

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Field-emission plug-and-play solution for microwave electron guns: To simplify the electron emission mechanism involved in microwave electron guns, a team of researchers has created and demonstrated a field-emission plug-and-play solution based on ultrananocrystalline diamond November 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE