Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Rice researchers make graphene hybrid

Abstract:
One-atom-thick sheet offers new microelectronic possibilities

Rice researchers make graphene hybrid

Houston, TX | Posted on March 3rd, 2010

Rice University researchers have found a way to stitch graphene and hexagonal boron nitride (h-BN) into a two-dimensional quilt that offers new paths of exploration for materials scientists.

The technique has implications for application of graphene materials in microelectronics that scale well below the limitations of silicon determined by Moore's Law.

New research from the lab of Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry, demonstrates a way to achieve fine control in the creation of such hybrid, 2-D structures.

Layers of h-BN a single atom thick have the same lattice structure as graphene, but electrically the materials are at opposite ends of the spectrum: h-BN is an insulator, whereas graphene, the single-atom-layer form of carbon, is highly conductive. The ability to assemble them into a single lattice could lead to a rich variety of 2-D structures with electric properties ranging from metallic conductor to semiconductor to insulator.

Because graphene is a conductor and h-BN is an insulator, the proportion of one to the other determines how well this new material conducts electrons. Lijie Ci and Li Song, both postdoctoral research scientists in Ajayan's lab, found that by putting down domains of h-BN and carbon via chemical vapor deposition (CVD), they were able to control the ratio of materials in the film that resulted.

Ci and Song are primary authors of a paper about the work that appeared in the online edition of Nature Materials this week.

Ajayan said the discovery is thrilling for a materials scientist.

"From a graphene perspective, it now gives us an opportunity to explore band-gap engineering in two-dimensional layered systems," he said. "The whole phase diagram of boron, carbon and nitrogen is fascinating, unexplored and offers a great playground for materials scientists.

"This is only the first instance showing that these structures can indeed be grown in 2-D like graphene," Ajayan said. "I think the whole new field will be exciting for basic physics and electro-optical applications."

Graphene has been the subject of intense study in recent years for its high conductivity and the possibility of manipulating it on scales that go well below the theoretical limits for silicon circuitry. A layer of graphene is a hexagonal lattice of carbon atoms. In bulk, it's called graphite, the stuff of pencil lead. Graphene was first isolated in 2004 by British scientists who used Scotch tape to pull single-atom layers from graphite.

"Graphene is a very hot material right now," said Song, who had teamed with Ci to investigate doping graphene with various materials to determine its semiconducting properties. Knowing that both boron and nitrogen had already been used in doping bulk graphite, they decided to try cooking it via CVD onto a copper base.

Structurally, h-BN is the same as graphene, a hexagon-shaped lattice of carbon atoms that looks like chicken wire. Ci and Song found that through CVD, graphene and h-BN merged into a single atomic sheet, with pools of h-BN breaking up the carbon matrix.

The critical factor for electronic materials is the band gap, which must be tuned in a controlled manner for applications. Graphene is a zero-gap material, but ways have been proposed to tailor this gap by patterning it into nanoscale strips and doping it with other elements.

Ci and Song took a different approach through CVD, controlling the ratio of carbon to h-BN over a large, useful range.

It remains challenging to produce single layers of the hybrid material, as most lab-grown films contain two or three layers. The researchers also cannot yet control the placement of h-BN pools in a single sheet or the rotational angles between layers - but they're working on it.

In fact, having multiple layers of the hybrid at various angles creates even more possibilities, they said. "For pure graphene, this rotation will affect the electronic properties," said Ci, who moved with Ajayan's lab from Rensselaer Polytechnic Institute to Houston in 2007.

The researchers are considering producing these materials on industrial-scale wafers. Graphene sheets several inches wide have already been synthesized in other labs, Ci said. And because graphene can be lithographically patterned and cut into shapes, the new material has great potential to be fabricated into useful devices with controllable electrical properties.

Co-authors on the paper with Ci, Song and Ajayan are visiting students Deep Jariwala and Yongjie Li and visiting professor Anchal Srivastava, all at Rice; Chuanhong Jin of the Nanotube Research Center, National Institute of Advanced Industrial Science and Technology in Tsukuba, Japan; Dangxin Wu, Z.F. Wang and Feng Liu of the Department of Materials Science and Engineering at the University of Utah; Kevin Storr of the Department of Physics at Prairie View A&M University; and Luis Balicas of the National High Magnetic Field Laboratory in Tallahassee, Fla.

Funding for the research came from Rice, the Office of Naval Research's Multidisciplinary University Research Initiative program on graphene and the Basic Energy Sciences Division of the Department of Energy.

View the paper at: www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2711.html

####

About Rice University
As a leading research university with a distinctive commitment to undergraduate education, Rice University aspires to pathbreaking research, unsurpassed teaching, and contribution to the betterment of our world. It seeks to fulfill this mission by cultivating a diverse community of learning and discovery that produces leaders across the spectrum of human endeavor.

For more information, please click here

Contacts:
Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Govt.-Legislation/Regulation/Funding/Policy

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Possible Futures

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Chip Technology

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanotubes/Buckyballs/Fullerenes

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Discoveries

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Materials/Metamaterials

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Announcements

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Alliances/Trade associations/Partnerships/Distributorships

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Leti Extends Collaboration with Qualcomm on CoolCubeTM 3D Integration Technology for High-Density, High-Performance ICs: Collaboration Goals Include Building an Ecosystem To Take the Chip-stacking Technology from Design to Fabrication April 13th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Strem Chemicals and SONA Nanotech Sign Distribution Agreement for the World’s First Gold Nanorods Synthesized without CTAB February 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic