Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > University of Michigan's Lurie Nanofabrication Facility Selects EV Group Wafer Bonding Systems for Advanced MEMS Research

Abstract:
Strategic Win Secured Given Superior Technology Advantages, Strong Customer Support and Affordability for University MEMS Research

University of Michigan's Lurie Nanofabrication Facility Selects EV Group Wafer Bonding Systems for Advanced MEMS Research

St. Florian, Austria | Posted on March 2nd, 2010

EV Group (EVG), a leading supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology and semiconductor markets, today announced that it has shipped two wafer bonding systems to the University of Michigan's Lurie Nanofabrication Facility (LNF)—a leading center for MEMS and microsystems research and an integral member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation. With a wafer bonder and aligner already installed at the facility, these new systems will increase the level of the university's overall MEMS research efforts by providing high-force wafer bonding capabilities. This order marks a strategic win for EVG as it poises the company for a long-term relationship with another major university with a strong MEMS research focus—and further expands EVG's overall presence in the university R&D arena.

Selected for their repeatability, reliability and technical support network, the bonding systems—an EVG 520IS and an EVG510—are undergoing installation at the customer site with completion targeted for Q1 this year. The wafer bonders will be used for a wide-range of MEMS-related research in fields such as biomedical, environmental, and optoelectronics. Both systems offer unique high-force bonding capabilities that would enable metal-to-metal bonding and specifically allow triple stack anodic bonding, for instance. The flexibility in force, as well as bonding form (e.g., anodic, eutectic, polymer, thermo-compression, and direct) that the systems offer will expand the research facility's processing capabilities.

"As a member of NNIN, we are always looking for the most advanced technical processing capabilities— not only for our own research efforts, but also in the interest of other research groups dedicated to advancing MEMS technology," said Professor Ken Wise of the University of Michigan and Director of the Lurie Nanofabrication Facility. "Following thorough evaluation of a number of wafer bonding systems, we selected EVG's bonding solutions for their superior technology capabilities. The combination of EVG's demo results, strong support network and the affordability of their system were all critical to our decision."

Steven Dwyer, Vice President and General Manager of EV Group North America, noted, "University of Michigan's Lurie Nanofabrication Facility is a stellar university research organization and we are thrilled that our systems were selected over the competition. The LNF has demonstrated the utmost confidence in our technology and technical support capabilities, which is testament to the strength of our solutions as well as our customer support team. We look forward to a long-term collaborative partnership with the LNF."

####

About EVGroup
EV Group (EVG) is a world leader in wafer-processing solutions for semiconductor, MEMS and nanotechnology applications. Through close collaboration with its global customers, the company implements its flexible manufacturing model to develop reliable, high-quality, low-cost-of-ownership systems that are easily integrated into customers' fab lines. Key products include wafer bonding, lithography/nanoimprint lithography (NIL) and metrology equipment, as well as photoresist coaters, cleaners and inspection systems.

In addition to its dominant share of the market for wafer bonders, EVG holds a leading position in NIL and lithography for advanced packaging and MEMS. Along these lines, the company co-founded the EMC- 3D consortium in 2006 to create and help drive implementation of a cost-effective through-silicon via (TSV) process for major ICs and MEMS/sensors. Other target semiconductor-related markets include silicon-on-insulator (SOI), compound semiconductor and silicon-based power-device solutions.

Founded in 1980, EVG is headquartered in St. Florian, Austria, and operates via a global customer support network, with subsidiaries in Tempe, Ariz.; Albany, N.Y.; Yokohama and Fukuoka, Japan; Seoul, Korea and Chung-Li, Taiwan. The company's unique Triple i-approach (invent - innovate - implement) is supported by a vertical integration, allowing EVG to respond quickly to new technology developments, apply the technology to manufacturing challenges and expedite device manufacturing in high volume. More information is available at www.EVGroup.com.

For more information, please click here

Copyright © EVGroup

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

New-Contracts/Sales/Customers

Bruker Light-Sheet Microscopes at Major Comprehensive Cancer Center: New Advanced Imaging Center Powered by Two MuVi and LCS SPIM Microscopes March 25th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project