Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > New Magnetic Solders Are a Leap Towards Green Alternatives

Abstract:
Yale University scientists have developed a magnetic solder that can be manipulated in three dimensions and selectively heated, and offers a more environmentally friendly alternative to today's lead-based solders. Their findings appear in the March 1 Early Edition of the Proceedings of the National Academy of Sciences.

New Magnetic Solders Are a Leap Towards Green Alternatives

New Haven, CT | Posted on March 2nd, 2010

Solders are low-melting-point metal alloys that act as a glue for bonding microchips and other electronic devices, such as transistors and resistors, and can be found in everything from computers to cell phones to MP3 players.

Until recently, virtually all solder was made from a tin-lead alloy. But because lead is a toxic substance, there is a lot of interest in trying to find a greener alternative. Recent legislation in Japan and the European Union bans the import of electronics with lead solders.

"We took this as an opportunity to improve solder for the environment, but we also took it as an opportunity to reexamine how to enhance solder in general," said Ainissa Ramirez, associate professor at the Yale School of Engineering & Applied Science and lead author of the study.

Until now, scientists had difficulty coming up with a suitable alternative for lead-based solders that are just as strong and have a similarly low melting point.

Now Ramirez and her team have developed a non-toxic solder made of tin-silver containing iron particles. Not only is using a tin-silver alloy an environmental advantage, the addition of iron particles has other benefits.

First, the iron makes the alloy much stronger than it would ordinarily be. When an external magnetic field is applied to the molten solder, these particles align themselves within the solder, making it even stronger once it again solidifies.

Second, the iron overcomes the problem of tin-silver having a higher melting point than traditional lead-based solders. By subjecting the solder to an alternating magnetic field, the solder can be selectively heated. This keeps surrounding materials at safe temperatures while melting only the solder itself.

Third, an external magnetic field can be used to remotely manipulate the solder, so it can be moved into hard-to-reach places, such as narrow vertical channels. This means that broken connections within devices can be "self-healed" by applying a magnetic field to melt the solder and attach the ends together.

"There is a whole range of possibilities for this new kind of solder," Ramirez said. "In addition to helping make the fabrication of microelectronics more environmentally responsible, these new solders have the potential to solve technological challenges."

Other authors of the paper include Joshua Calabro, Xu Huang and Brian Lewis, all of Yale University.

This research was funded by the National Science Foundation and the Yale Institute for Nanoscience and Quantum Engineering (YINQE).

####

About Yale University
Yale University comprises three major academic components: Yale College (the undergraduate program), the Graduate School of Arts and Sciences, and the professional schools. In addition, Yale encompasses a wide array of centers and programs, libraries, museums, and administrative support offices. Approximately 11,250 students attend Yale.

For more information, please click here

Contacts:
PRESS CONTACT:
Suzanne Taylor Muzzin
203-432-8555

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Videos/Movies

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Argonne discovery yields self-healing diamond-like carbon August 7th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Project to help bring widespread use of micro-robotics August 3rd, 2016

Products

Oxford Nanoimaging to provide desktop super-resolution microscopes May 10th, 2016

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 14th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 10th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Academic/Education

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizardŽ AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Chip Technology

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic