Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Diamond-like tip better than the best

Abstract:
German and US researchers have produced a super-sharp, strong, and resilient carbon tip that has earned top place as the industry's current benchmark.

Diamond-like tip better than the best

EU | Posted on March 2nd, 2010

Funded by the EU, the diamond-like tip is 3,000 times more wear-resistant at the nanoscale than a silicon oxide tip, making it ideal for use in atomic imaging, probe-based data storage, and other emerging applications. Findings from the study are published in the journal Nature Nanotechnology.

The research was part of PROTEM ('Probe-based terabit memory'), a project that received EUR 5.3 million under the 'Information society technologies' (IST) Thematic area of the Sixth Framework Programme (FP6). Collaborators on the current study include IBM Research-Zurich in Switzerland, and the US-based University of Pennsylvania and University of Wisconsin.

In their paper, the authors write that greater 'understanding of friction and wear at the nanoscale [the length scale applicable to nanotechnology] is important for many applications that involve nanoscale components sliding on a surface'. These emerging applications include nanolithography, nanometrology and nanomanufacturing.

Diamond-like carbon, they explain, is often used as a surface coating in certain types of applications that require low friction and wear because of its resistance to wear at the macroscale. Until now, the issue has always been the material's resilience to wear at the nanoscale because manufacturing diamond-like carbon structures with nanoscale precision is complex.

Another key difference between the macroscale and the nanoscale is that defects, cracks and other conditions that control material strength and wear at macroscopic scales are not as important at the nanoscale.

The new nano-sized tip produced by the researchers wears away at a significantly lower rate than that of a silicon oxide tip (the current state of the art). At a rate of one atom per micrometer of sliding on a substrate of silicon dioxide, the material has now set a new standard.

'[The diamond-like carbon material] is known to possess low friction in humid conditions, and we find that, at the nanoscale, it is three orders of magnitude more wear-resistant than silicon under ambient conditions,' they conclude.

The tip comprises carbon, hydrogen, silicon and oxygen, all combined together on the end of a silicon microcantilever (used in atomic force microscopy). Instead of simply coating the tip with wear-resistant materials, the scientists developed the material from scratch. They used a molding technique to produce the tips on the silicon microcantilevers, and a bulk processing technique that would allow for mass commercial manufacturing in the future.

For more information, please visit:

Nature Nanotechnology: www.nature.com/nnano/index.html

PROTEM project: www.protem-fp6.org/

IBM Research-Zürich: www.zurich.ibm.com/

Document Reference: Bhaskaran, H., et al. (2010) Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nature Nanotechnology (published online 31 January 2010). DOI: 10.1038/NNANO.2010.3.

####

About CORDIS
CORDIS, the Community Research and Development Information Service, is a free service provided by the Office for Official Publications of the European Communities.

It is dedicated to promoting participation in the EU research programmes and to facilitating the uptake of European research results by industry. The service contributes to achieve the strategic goal of the European Union to become the most competitive knowledge based economy in the world by 2010.

For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Govt.-Legislation/Regulation/Funding/Policy

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Nanoelectronics

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Announcements

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Tools

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

New NPZ100-403 Piezo Stage from nPoint Inc. September 17th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE