Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Diamond-like tip better than the best

Abstract:
German and US researchers have produced a super-sharp, strong, and resilient carbon tip that has earned top place as the industry's current benchmark.

Diamond-like tip better than the best

EU | Posted on March 2nd, 2010

Funded by the EU, the diamond-like tip is 3,000 times more wear-resistant at the nanoscale than a silicon oxide tip, making it ideal for use in atomic imaging, probe-based data storage, and other emerging applications. Findings from the study are published in the journal Nature Nanotechnology.

The research was part of PROTEM ('Probe-based terabit memory'), a project that received EUR 5.3 million under the 'Information society technologies' (IST) Thematic area of the Sixth Framework Programme (FP6). Collaborators on the current study include IBM Research-Zurich in Switzerland, and the US-based University of Pennsylvania and University of Wisconsin.

In their paper, the authors write that greater 'understanding of friction and wear at the nanoscale [the length scale applicable to nanotechnology] is important for many applications that involve nanoscale components sliding on a surface'. These emerging applications include nanolithography, nanometrology and nanomanufacturing.

Diamond-like carbon, they explain, is often used as a surface coating in certain types of applications that require low friction and wear because of its resistance to wear at the macroscale. Until now, the issue has always been the material's resilience to wear at the nanoscale because manufacturing diamond-like carbon structures with nanoscale precision is complex.

Another key difference between the macroscale and the nanoscale is that defects, cracks and other conditions that control material strength and wear at macroscopic scales are not as important at the nanoscale.

The new nano-sized tip produced by the researchers wears away at a significantly lower rate than that of a silicon oxide tip (the current state of the art). At a rate of one atom per micrometer of sliding on a substrate of silicon dioxide, the material has now set a new standard.

'[The diamond-like carbon material] is known to possess low friction in humid conditions, and we find that, at the nanoscale, it is three orders of magnitude more wear-resistant than silicon under ambient conditions,' they conclude.

The tip comprises carbon, hydrogen, silicon and oxygen, all combined together on the end of a silicon microcantilever (used in atomic force microscopy). Instead of simply coating the tip with wear-resistant materials, the scientists developed the material from scratch. They used a molding technique to produce the tips on the silicon microcantilevers, and a bulk processing technique that would allow for mass commercial manufacturing in the future.

For more information, please visit:

Nature Nanotechnology: www.nature.com/nnano/index.html

PROTEM project: www.protem-fp6.org/

IBM Research-Zürich: www.zurich.ibm.com/

Document Reference: Bhaskaran, H., et al. (2010) Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nature Nanotechnology (published online 31 January 2010). DOI: 10.1038/NNANO.2010.3.

####

About CORDIS
CORDIS, the Community Research and Development Information Service, is a free service provided by the Office for Official Publications of the European Communities.

It is dedicated to promoting participation in the EU research programmes and to facilitating the uptake of European research results by industry. The service contributes to achieve the strategic goal of the European Union to become the most competitive knowledge based economy in the world by 2010.

For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Nanoelectronics

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Building nanomaterials for next-generation computing: Scientists recently developed a blueprint to fabricate new nanoheterostructures using 2D materials June 1st, 2018

Rare element to provide better material for high-speed electronics May 30th, 2018

Announcements

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Tools

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project