Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ASU scientists develop universal DNA reader to advance faster, cheaper sequencing efforts

As a single chemical base of DNA (blue atoms) passes through a tiny, 2.5nm gap between two gold electrodes (top and bottom), it momentarily sticks to the electrodes (purple bonds) and a small increase in the current is detected. Each of the chemical bases of the DNA genetic code, abbreviated A, C, T or G, gives a unique electrical signature as they pass between the electrodes. Credit: Biodesign Institute at Arizona State University
As a single chemical base of DNA (blue atoms) passes through a tiny, 2.5nm gap between two gold electrodes (top and bottom), it momentarily sticks to the electrodes (purple bonds) and a small increase in the current is detected. Each of the chemical bases of the DNA genetic code, abbreviated A, C, T or G, gives a unique electrical signature as they pass between the electrodes. Credit: Biodesign Institute at Arizona State University

Abstract:
Arizona State University scientists have come up with a new twist in their efforts to develop a faster and cheaper way to read the DNA genetic code. They have developed the first, versatile DNA reader that can discriminate between DNA's four core chemical components-the key to unlocking the vital code behind human heredity and health.

ASU scientists develop universal DNA reader to advance faster, cheaper sequencing efforts

Phoenix, AZ | Posted on February 11th, 2010

Led by ASU Regents' Professor Stuart Lindsay, director of the Biodesign Institute's Center for Single Molecule Biophysics, the ASU team is one of a handful that has received stimulus funds for a National Human Genome Research Initiative, part of the National Institutes of Health, to make DNA genome sequencing as widespread as a routine medical checkup.

The broad goal of this "$1000 genome" initiative is to develop a next-generation DNA sequencing technology to usher in the age of personalized medicine, where knowledge of an individual's complete, 3 billion-long code of DNA information, or genome, will allow for a more tailored approach to disease diagnosis and treatment. With current technologies taking almost a year to complete at a cost of several hundreds of thousands of dollars, less than 20 individuals on the planet have had their whole genomes sequenced to date.

To make their research dream a reality, Lindsay's team has envisioned building a tiny, nanoscale DNA reader that could work like a supermarket checkout scanner, distinguishing between the four chemical letters of the DNA genetic code, abbreviated by A, G, C, and T, as they rapidly pass by the reader. To do so, they needed to develop the nanotechnology equivalent of threading the eye of a needle. In this case, the DNA would be the thread that could be recognized as it moved past the reader 'eye.' During the past few years, Lindsay's team has made steady progress, and first demonstrated the ability to read individual DNA sequences in 2008—but this approach was limited because they had to use four separate readers to recognize each of the DNA bases. More recently, they demonstrated the ability to thread DNA sequences through the narrow hole of a fundamental building block of nanotechnology, the carbon nanotube.

Lindsay's team relies on the eyes of nanotechnology, scanning tunneling- (STM) and atomic force- (ATM) microscopes, to make their measurements. The microscopes have a delicate electrode tip that is held very close to the DNA sample. In their latest innovation, Lindsay's team made two electrodes, one on the end of microscope probe, and another on the surface, that had their tiny ends chemically modified to attract and catch the DNA between a gap like a pair of chemical tweezers. The gap between these functionalized electrodes had to be adjusted to find the chemical bonding sweet spot, so that when a single chemical base of DNA passed through a tiny, 2.5 nanometer gap between two gold electrodes, it momentarily sticks to the electrodes and a small increase in the current is detected. Any smaller, and the molecules would be able to bind in many configurations, confusing the readout, any bigger and smaller bases would not be detected.

"What we did was to narrow the number of types of bound configurations to just one per DNA base," said Lindsay. "The beauty of the approach is that all the four bases just fit the 2.5 nanometer gap, so it is one size fits all, but only just so!"

At this scale, which is just a few atomic diameters wide, quantum phenomena are at play where the electrons can actually leak from one electrode to the other, tunneling through the DNA bases in the process. Each of the chemical bases of the DNA genetic code, abbreviated A, C, T or G, gives a unique electrical signature as they pass between the gap in the electrodes. By trial and error, and a bit of serendipity, they discovered that just a single chemical modification to both electrodes could distinguish between all 4 DNA bases.

"We've now made a generic DNA sequence reader and are the first group to report the detection of all 4 DNA bases in one tunnel gap," said Lindsay. "Also, the control experiments show that there is a certain (poor) level of discrimination with even bare electrodes (the control experiments) and this is in itself, a first too."

"We were quite surprised about binding to bare electrodes because, like many physicists, we had always assumed that the bases would just tumble through. But actually, any surface chemist will tell you that the bases have weak chemical interactions with metal surfaces."

Next, Lindsay's group is hard at work trying to adapt the reader to work in water-based solutions, a critically practical step for DNA sequencing applications. Also, the team would like to combine the reader capabilities with the carbon nanotube technology to work on reading short stretches of DNA.

If the process can be perfected, DNA sequencing could be performed much faster than current technology, and at a fraction of the cost. Only then will the promise of personalized medicine reach a mass audience.

The authors on the Nano Letters paper are: Shuai Chang, Shuo Huang, Jin He, Feng Liang, Peiming Zhang, Shengqing Li, Xiang Chen, Otto Sankey and Stuart Lindsay

The Nano Letters research article can be accessed online at URL: pubs.acs.org/doi/pdfplus/10.1021/nl1001185 (open sponsored access)


####

About Arizona State University
Arizona State University is a creating a new model for American higher education, an unprecedented combination of academic excellence, entrepreneurial energy and broad access. This New American University is a single, unified institution comprising four differentiated campuses positively impacting the economic, social, cultural and environmental health of the communities it serves. Its research is inspired by real world application, blurring the boundaries that traditionally separate academic disciplines. ASU serves more than 64,000 students in metropolitan Phoenix, Arizona, the nation's fifth largest city. ASU champions intellectual and cultural diversity, and welcomes students from all fifty states and more than one hundred nations across the globe.

For more information, please click here

Contacts:
Joe Caspermeyer

480-727-0369

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Nanotubes/Buckyballs

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Nanomedicine

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Tools

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Nanobiotechnology

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE