Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-Scientists Produce Field Sensors for Large Magnetic Resistances

Abstract:
Iranian researchers managed to produce a new kind of nano-layers which are suitable for synthesis of magnetic field sensors to be used in large magnetic resistances.

Nano-Scientists Produce Field Sensors for Large Magnetic Resistances

Iran | Posted on January 31st, 2010

The researchers could detect magnetic fields with magnitudes of less than 6 milliteslas (mT) by creating nanostructures of metals like platinum and copper on Si/SiO2/CuPt bases. Such a work is evaluated as a significant step forward in the production of magnetic field sensors with large magnetic resistances.

"In this work, a very thin film of silicon dioxide was deposited upon pure silicon, which was initially cleaned by a standard plasma cleaning process, by applying e-beam evaporation technique together with UV lithography," Seyedeh Maryam Banihashemian, a member of the research team, explained to the Iran Nanotechnology Initiative Council (INIC).

The effort led to the deposition of a 5 nanometers thick layer upon the silicon bed. In addition, by controlling layer deposition rates and pressure, the scientists managed to obtain layers of copper-platinum upon silicon-silicon dioxide bases with thicknesses less than 8 nanometers.

Then, the samples underwent wire annealing and their current-voltage curves in presence of a variable magnetic field were studied.

The obtained curves indicated that the sensors were capable of detecting magnetic filed with magnitudes of even less than 6 milliteslas. Finally nano layers were characterized by AFM, SEM, RBS tests.

"It was observed that nanometric structure of Cu-Pt, when its size is decreased, could detect magnetic fields whose magnitudes differ form that of the earth in terms of several milliteslas," Banihashemian added.

"Also, by applying magnetic fields, they exhibit unique characteristics like large magnetoresistances. These nanostructures can be used in magnetic field sensors, magnetic memories and biosensors." she added.

####

For more information, please click here

Copyright © FARS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Thin films

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Sensors

Researchers printed graphene-like materials with inkjet August 17th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Announcements

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Tools

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project