Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Engineers develop cancer-targeting nanoprobe sensors

UC Berkeley scientists are designing smart nanoprobes, called nanocorals, to selectively attach to cancer cells, deliver therapeutic drugs and report on the local molecular environment. One side of the nanocorals is designed to selectively target the cell, while the other has a roughened surface to sense tell-tale chemical particles in the environment. (Benjamin Ross and Liz Wu, UC Berkeley)
UC Berkeley scientists are designing smart nanoprobes, called nanocorals, to selectively attach to cancer cells, deliver therapeutic drugs and report on the local molecular environment. One side of the nanocorals is designed to selectively target the cell, while the other has a roughened surface to sense tell-tale chemical particles in the environment. (Benjamin Ross and Liz Wu, UC Berkeley)

Abstract:
Scientists at the University of California, Berkeley, have created smart nanoprobes that may one day be used in the battle against cancer to selectively seek out and destroy tumor cells, as well as report back on the mission's status.

Engineers develop cancer-targeting nanoprobe sensors

Berkeley, CA | Posted on January 30th, 2010

A small number of research teams around the world have been developing target-specific nanoprobes for the past 10 years in an effort to reduce — and perhaps eliminate — the toxic toll chemotherapy takes on the healthy cells that reside near their diseased counterparts.

What had been missing, however, is a mechanism by which the nanoprobes could not only find the cancer cell, but also relay information once they latched onto the target. The UC Berkeley team created such multi-functioning probes, which they have dubbed nanocorals.

The development of the new nanocorals is the cover story for the Feb. 22 print issue of the peer-reviewed journal Small.

"If you're sending a satellite into space, you need it to do more than one thing. It must reach its target, detect its surroundings, and communicate back to ground control," said Luke Lee, Lloyd Distinguished Professor of Bioengineering at UC Berkeley and head of the UC Berkeley team that developed the nanocoral. "The same is true in the molecular galaxy. We need probes that can find a diseased cell, treat it, and tell us about the local environment so we can determine whether the treatment is working. The nanocoral probes we invented are an important step in this direction."

The tiny probes measure a few hundred nanometers in diameter — one-thousandth the width of a human hair, and one-hundredth the size of most cancer cells. The team's insight was to combine different materials — roughened gold on one side, and smooth polystyrene on the other — onto a single probe.

The name of the new probe is inspired by natural sea corals, which use rough surfaces to enhance the capture of light and food particles.

"Like natural corals, the highly roughened nanocoral surface is designed to capture molecules near the probes, and report their presence back to researchers," said Benjamin Ross, a Ph.D. student in UC Berkeley's Applied Science and Technology Program, and one of two co-lead authors of the study. "The type of molecules present — or absent — at the cell's surface can provide telltale signs of how a cell is reacting to the new drug being delivered."

The sensing side of the nanocoral relies upon a technique called surface-enhanced Raman spectroscopy (SERS), which takes advantage of the electromagnetic excitations that occur as molecules make contact with the roughened surface of a metal, such as gold. Molecules produce oscillations that resonate at signature frequencies when exposed to laser light, revealing their presence to the scientists.

The researchers verified the sensitivity of the nanocoral by measuring its ability to detect a standard chemical compound for Raman spectroscopy.

To get the nanocoral to target specific cells, the researchers took advantage of the capability to attach antibodies to polymer surfaces.

"We can tailor the nanocoral to cancer cells of interest by attaching the appropriate antibodies," said the study's other co-lead author, Liz Wu, who conducted this research as a Ph.D. student in the Applied Science and Technology program.

The researchers demonstrated this concept by coating the polystyrene surface with antibodies that attack human epidermal growth factor receptor 2 (HER-2), a well-known target for cancer treatment since it is often over-expressed in aggressive forms of breast cancer. They confirmed with both bright field and fluorescent images that the nanocoral attached to breast cancer cells with HER-2 receptors, while control experiments showed that no binding occurred when different antibodies or when cells lacking HER-2 were used.

"We are still in the early stages of development, but we are optimistic that the nanocorals will eventually become useful diagnostic and treatment tools for a wide range of cancers," said Lee. "This will potentially allow us not only to deliver a drug, but also to see the response in real time at a sub-cellular level."

Another co-author of the study is SoonGweon Hong, UC Berkeley graduate student in bioengineering.

The National Institutes of Health Nanomedicine Development Center for the Optical Control of Biological Function and the Defense Advanced Research Projects Agency helped support this research.

####

About University of California, Berkeley
The University of California was chartered in 1868 and its flagship campus — envisioned as a "City of Learning" — was established at Berkeley, on San Francisco Bay. Today the world's premier public university and a wellspring of innovation, UC Berkeley occupies a 1,232 acre campus with a sylvan 178-acre central core. From this home its academic community makes key contributions to the economic and social well-being of the Bay Area, California, and the nation.

For more information, please click here

Contacts:

Copyright © University of California, Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Kalam: versatility personified August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Possible Futures

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanomedicine

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Sensors

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Nanobiotechnology

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project