Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Mismatched alloys are a good match for thermoelectrics

Contour plots showing electronic density of states in HMAs created from zinc selenide by the addition of (a) 3.125-percent oxygen atoms, and (b) 6.25 percent oxygen. The zinc and selenium atoms are shown in light blue and orange. Oxygen atoms (dark blue) are surrounded by high electronic density regions. (Image provided by Junqiao Wu)
Contour plots showing electronic density of states in HMAs created from zinc selenide by the addition of (a) 3.125-percent oxygen atoms, and (b) 6.25 percent oxygen. The zinc and selenium atoms are shown in light blue and orange. Oxygen atoms (dark blue) are surrounded by high electronic density regions. (Image provided by Junqiao Wu)

Abstract:
Employing some of the world's most powerful supercomputers, scientists at Lawrence Berkeley National Laboratory have shown that mismatched alloys are a good match for the future development of high performance thermoelectric devices. Thermoelectrics hold enormous potential for green energy production because of their ability to convert heat into electricity.

Mismatched alloys are a good match for thermoelectrics

Berkeley, CA | Posted on January 29th, 2010

Computations performed on "Franklin," a Cray XT4 massively parallel processing system operated by the National Energy Research Scientific Computing Center (NERSC), showed that the introduction of oxygen impurities into a unique class of semiconductors known as highly mismatched alloys (HMAs) can substantially enhance the thermoelectric performance of these materials without the customary degradation in electric conductivity.

"We are predicting a range of inexpensive, abundant, non-toxic materials in which the band structure can be widely tuned for maximal thermoelectric efficiency," says Junqiao Wu, a physicist with Berkeley Lab's Materials Sciences Division and a professor with UC Berkeley's Department of Materials Science and Engineering who led this research.

"Specifically, we've shown that the hybridization of electronic wave functions of alloy constituents in HMAs makes it possible to enhance thermopower without much reduction of electric conductivity, which is not the case for conventional thermoelectric materials," he says.

Collaborating with Wu on this work were Joo-Hyoung Lee and Jeffrey Grossman, both now at the Massachusetts Institute of Technology. The team published a paper on these results in Physical Review Letters titled, "Enhancing the Thermoelectric Power Factor with Highly Mismatched Isoelectronic Doping."

Seebeck Effect and Green Energy

In 1821, the German-Estonian physicist Thomas Johann Seebeck observed that a temperature difference between two ends of a metal bar created an electrical current in between, with the voltage being directly proportional to the temperature difference. This phenomenon became known as the Seebeck thermoelectric effect and it holds great promise for capturing and converting into electricity some of the vast amounts of heat now being lost in the turbine-driven production of electrical power. For this lost heat to be reclaimed, however, thermoelectric efficiency must be significantly improved.

"Good thermoelectric materials should have high thermopower, high electric conductivity, and low thermal conductivity," says Wu. "Enhancement in thermoelectric performance can be achieved by reducing thermal conductivity through nanostructuring. However, increasing performance by increasing thermopower has proven difficult because an increase in thermopower has typically come at the cost of a decrease in electric conductivity."

To get around this conundrum, Wu and his colleagues turned to HMAs, an unusual new class of materials whose development has been led by another physicist with Berkeley Lab's Materials Sciences Division, Wladyslaw Walukiewicz. HMAs are formed from alloys that are highly mismatched in terms of electronegativity, which is a measurement of their ability to attract electrons. The partial replacement of anions with highly electronegative isoelectronic ions makes it possible to fabricate HMAs whose properties can be dramatically altered with only a small amount of doping. Anions are negatively charged atoms and isoelectronic ions are different elements that have identical electronic configurations.

"In HMAs, the hybridization between extended states of the majority component and localized states of the minority component results in a strong band restructuring, leading to peaks in the electronic density of states and new sub bands in the original band structure," Wu says. "Owing to the extended states hybridized into these sub bands, high electric conductivity is largely maintained in spite of alloy scattering."

In their theoretical work, Wu and his colleagues discovered that this type of electronic structure engineering can be greatly beneficial for thermoelectricity. Working with the semiconductor zinc selenide, they simulated the introduction of two dilute concentrations of oxygen atoms (3.125 and 6.25 percent respectively) to create model HMAs. In both cases, the oxygen impurities were shown to induce peaks in the electronic density of states above the conduction band minimum. It was also shown that charge densities near the density of state peaks were substantially attracted toward the highly electronegative oxygen atoms.

Wu and his colleagues found that for each of the simulation scenarios, the impurity-induced peaks in the electronic density of states resulted in a "sharp increase" of both thermopower and electric conductivity compared to oxygen-free zinc selenide. The increases were by factors of 30 and 180 respectively.

"Furthermore, this effect is found to be absent when the impurity electronegativity matches the host that it substitutes," Wu says. "These results suggest that highly electronegativity-mismatched alloys can be designed for high performance thermoelectric applications."

Wu and his research group are now working to actually synthesize HMAs for physical testing in the laboratory. In addition to capturing energy that is now being wasted, Wu believes that HMA-based thermoelectrics can also be used for solid state cooling, in which a thermoelectric device is used to cool other devices or materials.

"Thermoelectric coolers have advantages over conventional refrigeration technology in that they have no moving parts, need little maintenance, and work at a much smaller spatial scale," Wu says.

This project was supported under Berkeley Lab's Laboratory Directed Research and Development Program.

Additional Information

For more information on the research of Junqiao Wu, visit his Website at www.mse.berkeley.edu/~jwu/

The paper "Enhancing the Thermoelectric Power Factor with Highly Mismatched Isoelectronic Doping" can be viewed on the Website of Physical Review Letters at www2.me.berkeley.edu/~jwu/publications/Lee-PRL-10.pdf

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Possible Futures

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Announcements

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Environment

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Energy

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project