Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Stopping Bacterial Infections Without Antibiotics

A scanning electron microscopy image of the bacterium Escherichia coli. Many bacteria, including E. coli, "talk" to each other by secreting and perceiving small molecules, a process called quorum sensing. Flagella and appendages that extend out of the cell walls can be produced in response to this signaling. Nearest neighbors control group behavior. Disrupting this intercellular communication could prove to be a new way to fight infection or disease.  Courtesy The Bentley Group.
A scanning electron microscopy image of the bacterium Escherichia coli. Many bacteria, including E. coli, "talk" to each other by secreting and perceiving small molecules, a process called quorum sensing. Flagella and appendages that extend out of the cell walls can be produced in response to this signaling. Nearest neighbors control group behavior. Disrupting this intercellular communication could prove to be a new way to fight infection or disease. Courtesy The Bentley Group.

Abstract:
Clark School's Nanofactories Could Be Next Big Step in Antimicrobial Treatment

Stopping Bacterial Infections Without Antibiotics

College Park, MD | Posted on January 27th, 2010

New research at the A. James Clark School of Engineering could prevent bacterial infections using tiny biochemical machines—nanofactories—that can confuse bacteria and stop them from spreading, without the use of antibiotics.

A paper about the research is featured in the current issue of Nature Nanotechnology. "Engineered biological nanofactories trigger quorum sensing response in targeted bacteria," was authored by Clark School alumnus Rohan Fernandes (Ph.D. '08, bioengineering), graduate student Varnika Roy (molecular and cell biology), graduate student Hsuan-Chen Wu (bioengineering), and their advisor, William Bentley (professor and chair, Fischell Department of Bioengineering).

The group's work is an update on their original nanofactories, first developed in 2007. Those nanofactories made use of tiny magnetic bits to guide them to the infection site.

"This is a completely new, all-biological version," he says. "The new nanofactories are self-guided and targeted. We've demonstrated for the first time that they're capable of finding a specific kind of bacterium and inducing it to communicate, a much finer level of automation and control."

The new nanofactories can tell the difference between bad (pathogenic) and good bacteria. For instance, our digestive tracts contain a certain level of good bacteria to help us digest food. The new nanofactories could target just the bad bacteria, without disrupting the levels of good bacteria in the digestive tract (a common side effect of many antibiotics). Nanofactories target the bacteria directly rather than traveling throughout the body, another advantage over traditional antibiotics.

Bacterial cells talk to each other in a form of cell-to-cell communication known as quorum sensing. When the cells sense that they have reached a certain quantity, an infection could be triggered. The biological nanofactories developed at the Clark School can interrupt this communication, disrupting the actions of the cells and shutting down an infection.

Alternatively, the nanofactories could trick the bacteria into sensing a quorum too early. Doing so would trigger the bacteria to try to form an infection before there are enough bacterial cells to do harm. This would prompt a natural immune system response capable of stopping them without the use of drugs.

Because nanofactories are designed to affect communication instead of trying to kill the bacteria, they could help treat illness in cases where a strain of bacteria has become resistant to antibiotics.

"The work by Dr. Bentley is extremely exciting as he is using the ability of engineering to 'build' using nature based components," says Philip Leduc, associate professor in the Departments of Mechanical and Biomedical Engineering and the Lane Center for Computational Biology and Biological Sciences at Carnegie Mellon University. "Understanding the science of cells is wonderful, but then using these components and constructing systems that leverage biological advantages is a huge step forward. His work in this paper uses his synthetic biology approach to build new nanofactories toward new areas of antimicrobials as well as opening new findings in quorum sensing."

The nanofactories' ability to alter cell-to-cell communication isn't limited to fighting infections.

"Quorum sensing and signaling molecules are actually used to accomplish a lot of things," Bentley explains. "Sometimes disease develops because communication is not taking place—a good example is digestive disorders that involve an imbalance of bacteria in the digestive tract. In that case, nanofactories could be used to start or increase communication instead of disrupting it."

For More Information:

Read the article at Nature Nanotechnology
www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2009.457.html

Visit Professor Bentley's web site
www.bioe.umd.edu/~bentley/

See a research overview at the Biochip Collaborative web site
biochip.umd.edu/bentley/index.html


####

About A. James Clark School of Engineering
The Clark School of Engineering, situated on the rolling, 1,500-acre University of Maryland campus in College Park, Md., is one of the premier engineering schools in the U.S.

The Clark School's graduate programs are collectively the fastest rising in the nation. In U.S. News & World Report's annual rating of graduate programs, the school is 17th among public and private programs nationally, 9th among public programs nationally and first among public programs in the mid-Atlantic region. The School offers 13 graduate programs and 12 undergraduate programs, including degree and certification programs tailored for working professionals.

The school is home to one of the most vibrant research programs in the country. With major emphasis in key areas such as communications and networking, nanotechnology, bioengineering, reliability engineering, project management, intelligent transportation systems and space robotics, as well as electronic packaging and smart small systems and materials, the Clark School is leading the way toward the next generations of engineering advances.

Visit the Clark School homepage at www.eng.umd.edu.

For more information, please click here

Copyright © PrNewswire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Collaboration could lead to biodegradable computer chips May 28th, 2015

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Possible Futures

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Molecular Machines

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Nanomedicine

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Announcements

Collaboration could lead to biodegradable computer chips May 28th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Nanobiotechnology

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project