Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nissha signs $1.4 million license for 3D input for touchscreens

Abstract:
Nissha signs $1.4 million licensing agreement for Peratech's ultra-thin, low power QTC technology switches to create next generation of touch screens with 3D input for mobile devices

Nissha signs $1.4 million license for 3D input for touchscreens

Richmond, North Yorks, England | Posted on January 26th, 2010

Peratech Limited, the leader in new materials designed for touch technology solutions, has announced that Nissha, one of the world's largest manufacturers of touch screen technology, has signed a $1.4 million licensing agreement to use Peratech's award winning Quantum Tunnelling Composites (QTC) to create next generation touch screens with 3D input for mobile phones and portable electronic devices. The licensing agreement gives Nissha exclusive worldwide rights to use the technology for screens smaller than 3.5 by 5.5 inches for an initial period of 1 year.

Philip Taysom, joint CEO of Peratech, said, "This is Peratech's first million dollar licensing agreement and is a huge testament to the power and potential of QTC technology by one of the world's leading manufacturers of touch screens for mobile phones and gaming consoles. QTC is also ideal for creating solutions for larger touch screens and we are actively investigating this market."

QTC's unique properties enable it to be made into force sensitive switches of any shape or size. QTC switches and switch matrices can be screen printed allowing for development and integration of switches that are as thin as 75 microns. QTC is also low power and interfaces can be designed with no start resistance so that without pressure, the switch draws no power and passes no current. Importantly, when pressure is applied, the resistance drops in proportion to the amount of pressure which allows sophisticated human machine interface designs that react to variations in pressure.

Chris Lussey, joint CEO of Peratech, commented, "QTC changes the game when it comes to human machine interface design with capabilities to build truly 3D user interfaces in small, low power devices. This three dimensionality cannot be matched with existing resistive and capacitive technologies. Using products with an embedded QTC switch consumers could use this third dimension to search deeper into a file structure simply by pressing harder, control an avatar's movement through a game more naturally or create the thin or thick lines which are vital for Far East characters."

QTC technology has no moving parts and requires no air gap between contacts. This makes it extremely reliable and suitable for integration into the thinnest electronic designs and with industry leading operational life. With QTC, touch screens can be made feature rich and ultra-thin allowing for the development of even slimmer, lighter weight and lower-power portable devices.

Takao Hashimoto, Director, CTO of Nissha and General Manager of Technology Research & Development, added, "QTC will be a disruptive technology for mobile phones enabling thinner phones to be designed with amazing new input interfaces."

####

About Peratech Limited
Peratech is the inventor and world leader in Quantum Tunnelling Composite (QTC) technology. QTC's are electro-active polymeric materials which enable the action of 'touch' to be translated into an electrical reaction, enabling a vast array of devices to incorporate very thin and highly robust 'sensing' of touch and pressure. Already widely used in robotics and defence, Peratech commercialised its QTC technology at the beginning of 2006 and is currently working with a number of key technology clients who are implementing QTC sensing technology within their own products.

QTC materials give enormous flexibility in the design, shape, thickness and style of a switch or pressure sensor and can be made in a range of elastomeric forms, including emulsive coatings (down to thicknesses of 10 microns), ‘bulk’ silicone or rubber and textile forms. Peratech pioneered the creation of electronic switches made from textiles as early as 2001. QTC has been recognised through numerous International awards and accolades including “Tomorrow’s World Industry Award 2002”, “Saatchi & Saatchi Innovation Award 2000” and “European Electronics Industry Award 2004”.

QTC materials have been used by organisations such as NASA, ILC Dover, Shadow Robotics and numerous government agencies World Wide. Peratech also owns SOFTswitch the pioneering creator of textile switching and Eleksen, the world leader in touch sensitive interactive textiles for electronics interface design. Further information is available from www.peratech.com

About Nissha

Nissha Printing is a future-oriented corporation that supplies advanced colour concepts, designs, and functions from its base in Kyoto to customers throughout the world using its own unique technology based on a foundation of traditional printing techniques.

Founded in 1929 and headquartered in Kyoto, Japan, Nissha Printing Company Limited was inaugurated in Kyoto on October the 6th, 1929 under the motto “Anybody can do type printing. Let’s do high class printing which no other company does.” From the inauguration of our company, we have consistently undertaken high class printing and have come to be known within the printing industry by the term “Nissha, the high class printing company.” However, from an early stage, we became involved in the development of printing techniques other than paper printing, and, in 1967, we became the first company in Japan to market wood grain pattern transfer foils. As a result, it became possible to transfer designs printed onto films onto the surfaces of moulded plastic objects, and, in 1983, we launched our own unique technology, the in-mould decoration system Nissha IMD, which is capable of transferring designs not only onto flat surfaces but also onto all manner of curved surfaces. In addition, in 1990, we developed analogue touch panels and commenced supplies of these products for the manufacture of PDAs. Today, the use of Nissha IMD technology has greatly expanded, and it is now employed around the world in the manufacture of products in every conceivable category including mobile telephones, notebook PCs, vehicle interior components, and information appliances, etc, with the result that this surface decoration technology has endowed a wide variety of everyday products with high degrees of decorativeness. In addition, in the field of touch panels, we boast one of the world’s highest levels of production capacity as well as advanced quality, and have cemented our position as a leading company in this industry through activities including the development of decorative touch windows consisting of an amalgamation of surface decoration technology with existing touch panels. Further information is available from www.nissha.co.jp/english/

For more information, please click here

Contacts:
Peratech Limited
Old Repeater Station
Brompton-on-Swale, North Yorkshire, DL10 7JH United Kingdom.
Tel: +44 (0) 8700 727272
Fax: +44 (0) 8700 727273


Nigel Robson
Vortex PR
Island House,Forest Road, Forest, Guernsey, GY8 0AB, United Kingdom
Tel: +44 1481 233080
UK Tel: 01481 233080
www.vortexpr.com

Copyright © Peratech Limited

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Announcements

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Patents/IP/Tech Transfer/Licensing

Programmable materials find strength in molecular repetition May 23rd, 2016

Syracuse University chemists add color to chemical reactions: Chemists in the College of Arts and Sciences have come up with an innovative new way to visualize and monitor chemical reactions in real time May 19th, 2016

Researchers integrate diamond/boron nitride crystalline layers for high-power devices May 12th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Alliances/Trade associations/Partnerships/Distributorships

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

Industrial Nanotech, Inc. Expands Distribution Network in US and Internationally May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

New-Contracts/Sales/Customers

Nanometrics Achieves Record 3D-NAND Bookings Quarter: A Record 3D-NAND Bookings Quarter, both in Aggregate and for Each of Three Key Customers March 28th, 2016

Keystone Nano selected by National Cancer Institute to participate in BIO March 23rd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Industrial Nanotech, Inc. Begins Supplying One of World's Largest Pulp and Paper Product Companies with Patented Energy Saving and Protective Coatings for Heat Process Equipment January 4th, 2016

Quantum nanoscience

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic