Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Breakthrough for the super material graphene

Abstract:
The hyper-quick electronics of the future will require new materials and the hottest around is graphene - a single layer of carbon atoms. Graphene produced using a method developed at Linköping University is now being used as part of a study at Chalmers University of Technology, where it has been shown that graphene maintains the same high quality as silicon, thus paving the way for large-scale production.

Breakthrough for the super material graphene

Sweden | Posted on January 26th, 2010

These promising results have been published in an online edition of the journal Nature Nanotechnology. The research group at Linköping University of Technology, led by Professor Rositza Yakimova, together with a research group at Chalmers, led by Associate Professor Sergey Kubatkin at the Department of Microtechnology and Nanoscience, MC2, along with colleagues in the United Kingdom and Italy, has demonstrated that Swedish graphene offers a high degree of accuracy for quantum mechanical effects - something that is otherwise only achieved in well-established semiconductors such as silicon and gallium arsenide.

The speed of the electrons in silicon - which is currently used to manufacture processors - has reached its limit. In graphene the electrons are 100 times quicker than in silicon and research groups throughout the world are now attempting to produce the material with sufficiently high quality.

Previously it has only been possible to demonstrate promising features on small areas of graphene. In order to progress it must be possible to manufacture the material with a larger area in order to make wafers from which circuits can be constructed. The focus of the research is now on wafers of silicon carbide, where the silicon is removed from the surface leaving a layer of carbon atoms. The advantage is that sufficiently large wafers of silicon carbide are commercially available although ensuring that the graphene is evenly shaped and with sufficient quality over large areas has proved difficult.

"The measurements indicate an improvement of four orders of magnitude or 10,000 times greater accuracy than the best results that have been achieved using exfoliated graphene," says Sergey Kubatkin, Associate Professor at Chalmers University of Technology. The results provide the first resistance standard, i.e. a measure of electronic resistance that is dependent purely on natural constants and which functions at a temperature of 4.2 K. The two resistance standards that have existed up to now are based on silicon or gallium arsenide but only work at very low temperatures and are considerably more difficult to produce and use.

The material that has now been tested successfully is manufactured using a method developed by the Linköping team Rositza Yakimova, Mikael Syväjärvi and Tihomir Iakimov.

"This indicates that Swedish research is world class when it comes to producing new materials that offer sufficiently high performance for use in the electronics of the future," says Mikael Syväjärvi, Associate Professor at the Department of Physics, Chemistry and Biology.

Article: Quantum resistance standard based on epitaxial graphene by A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M. Syväjärvi, R. Yakimova, O. Kazakova, T.J.B.M. Janssen, V. Falko and S. Kubatkin. Nature Nanotechnology Advanced Online Publication, January 17, 2010.

####

About Chalmers University of Technology
Chalmers is a Swedish university of technology in which research and teaching are conducted on a broad front within technology, natural science and architecture. Our inspiration lies in the joy of discovery and the desire to learn. Underlying everything we do is a wish to contribute to sustainable development both in Sweden and world-wide.

For more information, please click here

Contacts:
Sergey Kubatkin
associate professor
+46(0)31-772 5475


Mikael Fogelström
professor
+46(0)31-772 3196


Rositza Yakimova
professor
+46(0)13-282528


Mikael Syväjärvi
associate professor
+46(0)13-285708

Copyright © Chalmers University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Chip Technology

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Discoveries

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Materials/Metamaterials

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Announcements

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Quantum nanoscience

Drawing a line between quantum and classical world: Bell's Inequality fails as a test of the boundary July 21st, 2015

World first: Significant development in the understanding of macroscopic quantum behavior: Researchers from Polytechnique Montréal and Imperial College London demonstrate the wavelike quantum behavior of a polariton condensate on a macroscopic scale and at room temperature July 14th, 2015

The quantum physics of artificial light harvesting: How molecular vibrations make photosynthesis efficient July 13th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project