Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Breakthrough for the super material graphene

Abstract:
The hyper-quick electronics of the future will require new materials and the hottest around is graphene - a single layer of carbon atoms. Graphene produced using a method developed at Linköping University is now being used as part of a study at Chalmers University of Technology, where it has been shown that graphene maintains the same high quality as silicon, thus paving the way for large-scale production.

Breakthrough for the super material graphene

Sweden | Posted on January 26th, 2010

These promising results have been published in an online edition of the journal Nature Nanotechnology. The research group at Linköping University of Technology, led by Professor Rositza Yakimova, together with a research group at Chalmers, led by Associate Professor Sergey Kubatkin at the Department of Microtechnology and Nanoscience, MC2, along with colleagues in the United Kingdom and Italy, has demonstrated that Swedish graphene offers a high degree of accuracy for quantum mechanical effects - something that is otherwise only achieved in well-established semiconductors such as silicon and gallium arsenide.

The speed of the electrons in silicon - which is currently used to manufacture processors - has reached its limit. In graphene the electrons are 100 times quicker than in silicon and research groups throughout the world are now attempting to produce the material with sufficiently high quality.

Previously it has only been possible to demonstrate promising features on small areas of graphene. In order to progress it must be possible to manufacture the material with a larger area in order to make wafers from which circuits can be constructed. The focus of the research is now on wafers of silicon carbide, where the silicon is removed from the surface leaving a layer of carbon atoms. The advantage is that sufficiently large wafers of silicon carbide are commercially available although ensuring that the graphene is evenly shaped and with sufficient quality over large areas has proved difficult.

"The measurements indicate an improvement of four orders of magnitude or 10,000 times greater accuracy than the best results that have been achieved using exfoliated graphene," says Sergey Kubatkin, Associate Professor at Chalmers University of Technology. The results provide the first resistance standard, i.e. a measure of electronic resistance that is dependent purely on natural constants and which functions at a temperature of 4.2 K. The two resistance standards that have existed up to now are based on silicon or gallium arsenide but only work at very low temperatures and are considerably more difficult to produce and use.

The material that has now been tested successfully is manufactured using a method developed by the Linköping team Rositza Yakimova, Mikael Syväjärvi and Tihomir Iakimov.

"This indicates that Swedish research is world class when it comes to producing new materials that offer sufficiently high performance for use in the electronics of the future," says Mikael Syväjärvi, Associate Professor at the Department of Physics, Chemistry and Biology.

Article: Quantum resistance standard based on epitaxial graphene by A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M. Syväjärvi, R. Yakimova, O. Kazakova, T.J.B.M. Janssen, V. Falko and S. Kubatkin. Nature Nanotechnology Advanced Online Publication, January 17, 2010.

####

About Chalmers University of Technology
Chalmers is a Swedish university of technology in which research and teaching are conducted on a broad front within technology, natural science and architecture. Our inspiration lies in the joy of discovery and the desire to learn. Underlying everything we do is a wish to contribute to sustainable development both in Sweden and world-wide.

For more information, please click here

Contacts:
Sergey Kubatkin
associate professor
+46(0)31-772 5475


Mikael Fogelström
professor
+46(0)31-772 3196


Rositza Yakimova
professor
+46(0)13-282528


Mikael Syväjärvi
associate professor
+46(0)13-285708

Copyright © Chalmers University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Discoveries

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Materials/Metamaterials

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Quantum nanoscience

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic