Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Incorrectly Folded Fibers

Abstract:
Flash frozen under the electron microscope: examining the mechanical properties of Alzheimer's amyloid fibrils

Incorrectly Folded Fibers

Weinheim, Germany | Posted on January 26th, 2010

Alzheimer's disease, Parkinson's disease, type-II diabetes, and prion diseases like BSE all involve the deposition of amyloid fibrils in tissues and organs. These are fibrous clumps of incorrectly folded proteins; their exact structures and their roles in pathological processes are not yet completely understood. By using electron microscopic images of flash frozen samples, researchers have now been able to examine the exact structure of Alzheimer's amyloid fibrils and to assess their mechanical properties. As the team reports in the journal Angewandte Chemie, the fibrils are very stiff—one of the underlying causes of their pathogenicity.

Because amyloid fibrils are very difficult to analyze with traditional biophysical techniques, Marcus Fändrich (Max Planck Unit for Enzymology of Protein Folding, Halle/Saale, Germany), Carsten Sachse (MRC Laboratory of Molecular Biology, Cambridge, UK), and Nikolaus Grigorieff (Brandeis University, Waltham, USA) were forced to take another approach: They examined Alzheimer's amyloid fibrils by electron cryomicroscopy. "These experiments allowed us to examine the structure of the fibrils at a previously unattainable resolution," explains Fändrich.

The fibrils appear in twisted bands about 20 nm wide and are often bent in the raw electron microscopic images. "These bent fibrils are a snapshot of the fibrils in solution," says Fändrich. "We use the degree of bending and twisting to calculate how stiff the fibrils are." This revealed that the Alzheimer's amyloid fibrils are relatively rigid structures. "The uncontrolled formation of such stiff fibrils is presumably critical for the pathogenicity of amyloid fibrils," reports Fändrich. "In many amyloid diseases, the fibrils are preferentially deposited in tissues that are normally contractile or elastic, like the heart muscle or the walls of blood vessels. Medical findings indicate that the fibrils somewhat stiffen these tissues."

"In addition, our data may help to better evaluate the possible uses of amyloid fibers as novel biotechnological agents," reports Fändrich. Based on their material properties and ease of modification, amyloid fibers are potentially interesting as novel building materials.

Author: Marcus Fändrich, Max Planck Research Unit for Enzymology of Protein Folding, Halle (Germany), www.enzyme-halle.mpg.de/amyloid/staff.htm

Title: Nanoscale Flexibility Parameters of Alzheimer Amyloid Fibrils Determined by Electron Cryo-Microscopy

Angewandte Chemie International Edition 2010, 49, No. 7, Permalink: dx.doi.org/10.1002/anie.200904781

####

About Wiley InterScience
Wiley InterScience (www.interscience.wiley.com) provides access to over 3 million articles across nearly 1500 journals and 7000 Online Books and major reference works. It also holds industry leading databases such as The Cochrane Library, chemistry databases and the acclaimed Current Protocols laboratory manuals.

Wiley InterScience is one of the world's premiere resources for study, teaching and advanced research.

For more information, please click here

Contacts:
Editorial office


Amy Molnar (US)


Jennifer Beal (UK)


Alina Boey (Asia)

Copyright © Wiley InterScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project