Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carnegie Mellon and Intel Collaborate To Improve Energy Costs and Efficiency in Chip Making

AshFague Habib, a Ph.D. materials science and engineering candidate, and a member of the research team working on solder magnetic nanocomposites.
AshFague Habib, a Ph.D. materials science and engineering candidate, and a member of the research team working on solder magnetic nanocomposites.

Abstract:
Carnegie Mellon University and Intel Corporation will unveil a new class of materials called solder magnetic nanocomposites that could help streamline the process of computer electronic packaging. The milestone research will be discussed at the 11th annual Magnetism and Magnetics Materials Conference Jan. 18-22 at the Marriott Washington Wardman Park in Washington, D.C.

Carnegie Mellon and Intel Collaborate To Improve Energy Costs and Efficiency in Chip Making

Pittsburgh, PA | Posted on January 21st, 2010

A Carnegie Mellon research team led by Michael McHenry, professor of materials science and engineering, biomedical engineering and physics, in collaboration with Raja Swaminathan, Intel senior packaging materials engineer, have devised an RF heating technique for solder magnetic nanoparticle (MNP) composites that can sufficiently heat solders to cause reflow without placing computer chips in conventional ovens. A solder is a metal alloy used to bond metals together. McHenry's team includes Ph.D. materials science and engineering candidates AshFague Habib and Kelsey Miller, and Matt Ondeck, a junior in materials science and engineering.

At present, state-of-the-art techniques for making computer chips during the electronic packaging process involve use of hot air convection or the use of infrared ovens. Because heating the chips in these ovens requires significant energy costs and also poses the risk of chip warpage, McHenry's team worked collaboratively with Intel's Swaminathan to develop a tool that uses radio frequency coils to heat specially designed magnetic particles that are mixed with solder pastes.

"By varying the concentration and composition of these magnetic particles we can control the time it takes to heat them, which ultimately helps improve the speed of processing them, and potentially lowers the cost," said McHenry, co-publication chair of the MMM/Intermag Conference.

The annual conference brings together scientists and engineers interested in recent developments in all branches of fundamental and applied magnetism. Major emphasis is placed on experimental and theoretical research in magnetism, the properties and synthesis of new magnetic materials, and advances in magnetic technology.

"It is always gratifying to see an idea actually demonstrated in reality," Swaminathan said. "This first successful demonstration could open up possibilities of other applications even outside microelectronic packaging. Though we have a long way to go in implementing a locally melting solder in actual applications, the concept of local heating opens up many processing opportunities that we are working to further explore with McHenry. There is significant opportunity here for good basic science and technology exploration," Swaminathan said.

In addition to speeding up the solder process, McHenry's team also improved the electrical interconnects during the critical electronic packaging process. Because chip warpage is more of a problem at the temperature required to make lead-free solders reflow, this technology developed by Carnegie Mellon researchers will have additional benefits with these more environmentally friendly solders.

"There are many possibilities for this process throughout a variety of industry sectors, including the semi-conductor sector, aerospace and data storage industry," McHenry said.

Research funding for this project comes from a broad swath of sources, including chip making giant Intel and the National Science Foundation.

####

About Carnegie Mellon University
Carnegie Mellon University is a global research university with more than 11,000 students, 75,000 active alumni, and 4,000 faculty and staff. Recognized for its world-class arts and technology programs, collaboration across disciplines and innovative leadership in education, Carnegie Mellon is consistently a top-ranked university.

For more information, please click here

Contacts:
Chriss Swaney
412-268-5776

Copyright © Carnegie Mellon University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

Memory Technology

Nano - "Green" metal oxides ... January 13th, 2015

Quantum optical hard drive breakthrough January 8th, 2015

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Environment

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Magnetic Nanosorbents Able to Eliminate Chemical Contaminants January 19th, 2015

Malaysian Nanotechnology Company Nanopac Innovation Ltd. lists on the NSX January 19th, 2015

Aerospace/Space

Asteroid Mining 101: A New Book by World-Renowned Expert Dr. John S. Lewis - Exclusive Sneak-Peek Opportunity for Book Reviewers and Media January 29th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Production of Special Nanocomposite in Iran with Application in Railways December 23rd, 2014

Events/Classes

Hiden Gas Analysers at PITTCON 2015 | Visit us on Booth No. 1127 January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Pittcon News: Renishaw adds to the comprehensive imaging options available with its inVia confocal Raman microscope January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

Alliances/Partnerships/Distributorships

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE