Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Carnegie Mellon and Intel Collaborate To Improve Energy Costs and Efficiency in Chip Making

AshFague Habib, a Ph.D. materials science and engineering candidate, and a member of the research team working on solder magnetic nanocomposites.
AshFague Habib, a Ph.D. materials science and engineering candidate, and a member of the research team working on solder magnetic nanocomposites.

Abstract:
Carnegie Mellon University and Intel Corporation will unveil a new class of materials called solder magnetic nanocomposites that could help streamline the process of computer electronic packaging. The milestone research will be discussed at the 11th annual Magnetism and Magnetics Materials Conference Jan. 18-22 at the Marriott Washington Wardman Park in Washington, D.C.

Carnegie Mellon and Intel Collaborate To Improve Energy Costs and Efficiency in Chip Making

Pittsburgh, PA | Posted on January 21st, 2010

A Carnegie Mellon research team led by Michael McHenry, professor of materials science and engineering, biomedical engineering and physics, in collaboration with Raja Swaminathan, Intel senior packaging materials engineer, have devised an RF heating technique for solder magnetic nanoparticle (MNP) composites that can sufficiently heat solders to cause reflow without placing computer chips in conventional ovens. A solder is a metal alloy used to bond metals together. McHenry's team includes Ph.D. materials science and engineering candidates AshFague Habib and Kelsey Miller, and Matt Ondeck, a junior in materials science and engineering.

At present, state-of-the-art techniques for making computer chips during the electronic packaging process involve use of hot air convection or the use of infrared ovens. Because heating the chips in these ovens requires significant energy costs and also poses the risk of chip warpage, McHenry's team worked collaboratively with Intel's Swaminathan to develop a tool that uses radio frequency coils to heat specially designed magnetic particles that are mixed with solder pastes.

"By varying the concentration and composition of these magnetic particles we can control the time it takes to heat them, which ultimately helps improve the speed of processing them, and potentially lowers the cost," said McHenry, co-publication chair of the MMM/Intermag Conference.

The annual conference brings together scientists and engineers interested in recent developments in all branches of fundamental and applied magnetism. Major emphasis is placed on experimental and theoretical research in magnetism, the properties and synthesis of new magnetic materials, and advances in magnetic technology.

"It is always gratifying to see an idea actually demonstrated in reality," Swaminathan said. "This first successful demonstration could open up possibilities of other applications even outside microelectronic packaging. Though we have a long way to go in implementing a locally melting solder in actual applications, the concept of local heating opens up many processing opportunities that we are working to further explore with McHenry. There is significant opportunity here for good basic science and technology exploration," Swaminathan said.

In addition to speeding up the solder process, McHenry's team also improved the electrical interconnects during the critical electronic packaging process. Because chip warpage is more of a problem at the temperature required to make lead-free solders reflow, this technology developed by Carnegie Mellon researchers will have additional benefits with these more environmentally friendly solders.

"There are many possibilities for this process throughout a variety of industry sectors, including the semi-conductor sector, aerospace and data storage industry," McHenry said.

Research funding for this project comes from a broad swath of sources, including chip making giant Intel and the National Science Foundation.

####

About Carnegie Mellon University
Carnegie Mellon University is a global research university with more than 11,000 students, 75,000 active alumni, and 4,000 faculty and staff. Recognized for its world-class arts and technology programs, collaboration across disciplines and innovative leadership in education, Carnegie Mellon is consistently a top-ranked university.

For more information, please click here

Contacts:
Chriss Swaney
412-268-5776

Copyright © Carnegie Mellon University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Chip Technology

A nano-roundabout for light December 10th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Memory Technology

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

A Tiny Machine: UCSB electrical and computer engineers design an infinitesimal computing device October 28th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

Nanoelectronics

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Environment

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Aerospace/Space

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

New records set up with 'Screws of Light' November 20th, 2016

Keep it Clean: Leti and French Partners to Test ‘Smart’ Antibacterial Surfaces in Space: Matiss Experiment Designed to Measure Most Effective Material for Cleaning International Space Station and Is Expected to Provide Earth-bound Applications November 15th, 2016

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

Events/Classes

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

IEDM: Leti CEO Marie Semeria to Give Opening-day Keynote on Impact of ‘Hyperconnectivity’ and IoT: Speech to Portray Key Role Nonprofit Research and Technology Organizations Play in Making Technology More Efficient and Ensuring Safety and Security November 29th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project