Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > European collaboration makes breakthrough in developing super-material graphene

Abstract:
A collaborative research project has brought the world a step closer to producing a new material on which future nanotechnology could be based. Researchers across Europe, including the UK's National Physical Laboratory (NPL), have demonstrated how an incredible material, graphene, could hold the key to the future of high-speed electronics, such as micro-chips and touchscreen technology.

European collaboration makes breakthrough in developing super-material graphene

UK | Posted on January 19th, 2010

Graphene has long shown potential, but has previously only been produced on a very small scale, limiting how well it could be measured, understood and developed. A paper published on the 17th January, in Nature Nanotechnology explains how researchers have, for the first time, produced graphene to a size and quality where it can be practically developed, and successfully measured its electrical characteristics. These significant breakthroughs overcome two of the biggest barriers to scaling up the technology.

A technology for the future

Graphene is a relatively new form of carbon made up of a single layer of atoms arranged in a honeycomb shaped lattice. Despite being one atom thick and chemically simple, graphene's is extremely strong and highly conductive, making it ideal for high-speed electronics, photonics and beyond.

Graphene is a strong candidate to replace semiconductor chips. Moore's Law observes that the density of transistors on an integrated circuit doubles every two years, but silicon and other existing transistor materials are thought to be close to the minimum size where they can remain effective. Graphene transistors can potentially run at faster speeds and cope with higher temperatures. Graphene could be the solution to ensuring computing technology to continue to grow in power whilst shrinking in size, extending the life of Moore's law by many years.

Large microchip manufacturers such as IBM and Intel have openly expressed interest in the potential of graphene as a material on which future computing could be based.

Graphene also has potential for exciting new innovations such as touchscreen technology, LCD displays and solar cells. Its unparalleled strength and transparency make it perfect for these applications, and its conductivity would offers a dramatic increase in efficiency on existing materials.

Growing to a usable size while maintaining quality

Until now graphene of sufficient quality has only been produced in the form of small flakes of tiny fractions of a millimeter, using painstaking methods such as peeling layers off graphite crystals with sticky tape. Producing useable electronics requires much larger areas of material to be grown. This project saw researchers, for the first time, produce and successfully operate a large number of electronic devices from a sizable area of graphene layers (approximately 50 mm2).

The graphene sample, was produced epitaxially - a process of growing one crystal layer on another - on silicon carbide. Having such a significant sample not only proves that it can be done in a practical, scalable way, but also allowed the scientists to better understand important properties.

Measuring resistance

The second key breakthrough of the project was measuring graphene's electrical characteristics with unprecedented precision, paving the way for convenient and accurate standards to be established. For products such as transistors in computers to work effectively and be commercially viable, manufacturers must be able to make such measurements with incredible accuracy against an agreed international standard.

The international standard for electrical resistance is provided by the Quantum Hall Effect, a phenomenon whereby electrical properties in 2D materials can be determined based only on fundamental constants of nature.

The effect has, until now, only been demonstrated with sufficient precision in a small number of conventional semiconductors. Furthermore, such measurements need temperatures close to absolute zero, combined with very strong magnetic fields, and only a few specialised laboratories in the world can achieve these conditions.

Graphene was long tipped to provide an even better standard, but samples were inadequate to prove this. By producing samples of sufficient size and quality, and accurately demonstrate Hall resistance, the team proved that graphene has the potential to supersede conventional semiconductors on a mass scale.

Furthermore graphene shows the Quantum Hall Effect at much higher temperatures. This means the graphene resistance standard could be used much more widely as more labs can achieve the conditions required for its use. In addition to its advantages of operating speed and durability, this would also speed the production and reduce costs of future electronics technology based on graphene

Prof Alexander Tzalenchuk from NPL's Quantum Detection Group and the lead author on the Nature Nanotechnology paper observes: "It is truly sensational that a large area of epitaxial graphene demonstrated not only structural continuity, but also the degree of perfection required for precise electrical measurements on par with conventional semiconductors with a much longer development history."

Where now?

The research team isn't content to leave it there. They are hoping to go on to demonstrate even more precise measurement, as well as accurate measurement at even higher temperatures. They are currently seeking EU funding to drive this forward.

Dr JT Janssen, an NPL Fellow who worked on the project, said: "We've laid the groundwork for the future of graphene production, and will strive in our ongoing research to provide greater understanding of this exciting material. The challenge for industry in the coming years will be to scale the material up in a practical way to meet new technology demands. We have taken a huge step forward, and once the manufacturing processes are in place, we hope graphene will offer the world a faster and cheaper alternative to conventional semiconductors".

The research was a joint project carried by the National Physical Laboratory; Chalmers University of Technology, Göteborg, Sweden; Politecnico di Milano, Italy; Linköping University, Sweden and Lancaster University, UK. Measurement was carried out by the Quantum Detection Group at the UK's at the National Physical Laboratory, Teddington, UK.


Notes to Editors

The Nature Paper Can be viewed here dx.doi.org/10.1038/NNANO.2009.474

Technical detail

The sample was grown epitaxially by removing all silicon atoms in a controlled way from a single surface layer of silicon carbide and allowing the remaining carbon to form the nearly ideal graphene monolayer. The next step was to use standard microfabrication techniques, such as the electron beam lithography and reactive ion etching, to produce devices ranging in lateral size from a few micrometers (1 micrometer = 0.001 mm) to hundreds of micrometers and still only one carbon atom thick. All devices measured so far showed the desired electronic characteristics.

The Quantum Hall Effect

This appears where an electric current flows through a two dimensional material in a perpendicular magnetic field and the voltage in the material is measured perpendicular to both the current flow and the field. Within certain periodic intervals of field, the ratio of this transverse voltage to the current, known as the Hall resistance, is determined only by a known combination of fundamental constants of nature - the Planck's constant h and the electron charge e.

Because of this universality, the Quantum Hall effect provides the basis for the resistance standard in principle independent of a particular sample, material or measurement setup.

The Quantum Hall effect has, until now, only been accurately demonstrated with sufficient precision in a small number of conventional semiconductors, such as Si and group III-V heterostructures. Because of its unique electronic structure, graphene was long tipped to provide an even better standard, but the small size of graphene flakes and insufficient quality of early graphene films did not allow accurate measurements to be performed.

####

About National Physical Laboratory
The National Physical Laboratory (NPL) is one of the UK's leading science facilities and research centres. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

NPL occupies a unique position as the UK's National Measurement Institute and sits at the intersection between scientific discovery and real world application. Its expertise and original research have underpinned quality of life, innovation and competitiveness for UK citizens and business for more than a century.

Contacts:
David Lewis

084-568-01865

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project