Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Alnylam and Collaborators Discover Additional Class of Novel Lipid Nanoparticles with Markedly Improved In Vivo Potency for RNAi Therapeutics

Abstract:
New Paper Published in Nature Biotechnology Reports on a Rational Design Approach for Discovery of Novel Lipids

Alnylam and Collaborators Discover Additional Class of Novel Lipid Nanoparticles with Markedly Improved In Vivo Potency for RNAi Therapeutics

Cambridge, MA | Posted on January 19th, 2010

Alnylam Pharmaceuticals, Inc. (Nasdaq: ALNY), a leading RNAi therapeutics company, today announced the publication of new data in the journal Nature Biotechnology by Alnylam scientists and collaborators from Tekmira Pharmaceuticals Corporation, AlCana Technologies, Inc., and The University of British Columbia (UBC). The new study employed a rational design approach for the discovery of novel lipids that can be incorporated into lipid nanoparticles (LNPs) for systemic delivery of RNAi therapeutics. This new research complements the combinatorial chemistry-based approach recently described by Alnylam scientists in the Proceedings of the National Academy of Sciences (PNAS) (Love et al. (January 11, 2010) Proc. Natl Acad. Sci. USA, 10.1073/pnas.0910603106), and highlights the power of using multiple parallel approaches for optimizing LNPs.

"We are very excited by our continued progress in discovering new LNP compositions that provide dramatic improvements in the systemic delivery of RNAi therapeutics," said Victor Kotelianski, M.D., Ph.D., D.Sc., Senior Vice President, Distinguished Alnylam Fellow. "As compared with our recent paper from our MIT collaboration just last month, this new paper highlights the results of an entirely different approach using rational design for lipid discovery. When formulated with siRNAs, these new lipids form highly potent LNPs that augment Alnylam's platform of second generation LNPs. We believe that these discoveries will define major new opportunities for Alnylam for the advancement of our pipeline."

The new paper (Semple et al., Nature Biotechnology advance online publication, 17 January 2010 (doi:10.1038/nbt.1602)) describes the discovery of a novel lipid, known as "KC2," based on a medicinal chemistry effort to explore the structure-activity relationships in the lipid "DLinDMA," which is used in certain first generation LNPs such as Tekmira's stable nucleic acid-lipid particles (SNALP) formulations. A large number of novel lipids were synthesized to probe the relationship of lipid structure, such as the alkyl chain, linker, and head group moieties, with function as determined by screening for in vivo gene silencing activity. Additional measurements were performed to characterize the ability of the novel lipids to mediate certain physicochemical changes in lipid bilayers consistent with needed disruption of endosomal membranes. In order to explore its suitability for systemic delivery, the novel KC2 lipid was formulated with siRNA in an LNP formulation. Specifically, the in vivo data showed that:

* gene silencing in rodents was achieved following a single injection at doses as low as 0.01mg/kg;
* potent and selective silencing of the clinically relevant gene transthyretin (TTR) was achieved at doses as low as 0.1 mg/kg in non-human primates; and,
* the formulation was found to be well tolerated in both rodents and non-human primates.

"We've been successful in using distinct, albeit complementary strategies for new lipid discovery that has led to the creation of a robust second generation LNP platform for use in Alnylam's systemic delivery efforts," said Antonin de Fougerolles, Ph.D., Vice President Research. "The novel KC2-containing LNPs described in the current paper demonstrate potent gene silencing efficacy with siRNA at very low microgram per kilogram doses in several species including non-human primates. We fully expect that the significantly improved potency of these second generation LNPs will yield important advantages for advancement of RNAi therapeutics including lowered material requirements, improved therapeutic index, and expanded scope of delivery beyond the liver."

LNP formulations represent one of several approaches Alnylam is pursuing for systemic delivery of RNAi therapeutics. Additional approaches include novel lipidoid formulations, mimetic lipoprotein particles (MLPs), siRNA conjugation strategies, and single-stranded RNAi, amongst others. Alnylam is currently enrolling patients in a Phase I clinical program with its systemic RNAi therapeutic ALN-VSP for the treatment of liver cancers. In addition, Alnylam intends to initiate a Phase I trial in the first half of 2010 for an additional systemic RNAi therapeutic, ALN-TTR01 for the treatment of TTR-mediated amyloidosis. ALN-VSP and ALN-TTR01 both utilize a first generation SNALP formulation developed in collaboration with Tekmira Pharmaceuticals Corporation.

Alnylam Forward-Looking Statement

Various statements in this release concerning Alnylam's future expectations, plans and prospects, constitute forward-looking statements for the purposes of the safe harbor provisions under The Private Securities Litigation Reform Act of 1995. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including the company's ability to successfully discover and develop novel drug candidates, successfully and demonstrate efficacy and safety of its drug candidates in human clinical trials, as well as those risks more fully discussed in the "Risk Factors" section of its most recent quarterly report on Form 10-Q on file with the Securities and Exchange Commission. In addition, any forward-looking statements represent Alnylam's views only as of today and should not be relied upon as representing its views as of any subsequent date. Alnylam does not assume any obligation to update any forward-looking statements.

####

About Alnylam Pharmaceuticals
Alnylam is a biopharmaceutical company developing novel therapeutics based on RNA interference, or RNAi. The company is applying its therapeutic expertise in RNAi to address significant medical needs, many of which cannot effectively be addressed with small molecules or antibodies, the current major classes of drugs. Alnylam is leading the translation of RNAi as a new class of innovative medicines with peer-reviewed research efforts published in the world's top scientific journals including Nature, Nature Medicine, and Cell. The company is leveraging these capabilities to build a broad pipeline of RNAi therapeutics; its most advanced program is in Phase II human clinical trials for the treatment of respiratory syncytial virus (RSV) infection and is partnered with Cubist and Kyowa Hakko Kirin. In addition, the company is developing RNAi therapeutics for the treatment of a wide range of disease areas, including liver cancers, TTR-mediated amyloidosis, hypercholesterolemia, and Huntington's disease. The company's leadership position in fundamental patents, technology, and know-how relating to RNAi has enabled it to form major alliances with leading companies including Medtronic, Novartis, Biogen Idec, Roche, Takeda, Kyowa Hakko Kirin, and Cubist. Alnylam and Isis are joint owners of Regulus Therapeutics Inc., a company focused on the discovery, development, and commercialization of microRNA-based therapeutics. Founded in 2002, Alnylam maintains headquarters in Cambridge, Massachusetts.

About RNA Interference (RNAi)

RNAi (RNA interference) is a revolution in biology, representing a breakthrough in understanding how genes are turned on and off in cells, and a completely new approach to drug discovery and development. Its discovery has been heralded as "a major scientific breakthrough that happens once every decade or so," and represents one of the most promising and rapidly advancing frontiers in biology and drug discovery today which was awarded the 2006 Nobel Prize for Physiology or Medicine. RNAi is a natural process of gene silencing that occurs in organisms ranging from plants to mammals. By harnessing the natural biological process of RNAi occurring in our cells, the creation of a major new class of medicines, known as RNAi therapeutics, is on the horizon. Small interfering RNAs (siRNAs), the molecules that mediate RNAi and comprise Alnylam's RNAi therapeutic platform, target the cause of diseases by potently silencing specific mRNAs, thereby preventing disease-causing proteins from being made. RNAi therapeutics have the potential to treat disease and help patients in a fundamentally new way.

For more information, please click here

Contacts:
Alnylam Pharmaceuticals, Inc.
Investors:
Cynthia Clayton
617-551-8207

Media:
Spectrum
Amanda Sellers
202-955-6222 x2597

Copyright © Alnylam Pharmaceuticals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Nanomedicine

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 December 6th, 2017

Discoveries

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Announcements

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Nanobiotechnology

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 December 6th, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Drug-delivering nanoparticles seek and destroy elusive cancer stem cells November 28th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project