Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Golden Pairs

Au pairs: Whereas one methane molecule is not dehydrogenated by free gold-dimer cations, the cooperative interaction of two methane ligands initiates a catalytic formation of ethylene. The cycle is closed by the adsorption of a third methane molecule that cooperatively activates the release of ethylene (see scheme yellow Au, green C, blue H). This cycle is derived from ab initio calculations and gas-phase reaction kinetics measurements.
Au pairs: Whereas one methane molecule is not dehydrogenated by free gold-dimer cations, the cooperative interaction of two methane ligands initiates a catalytic formation of ethylene. The cycle is closed by the adsorption of a third methane molecule that cooperatively activates the release of ethylene (see scheme yellow Au, green C, blue H). This cycle is derived from ab initio calculations and gas-phase reaction kinetics measurements.

Abstract:
Catalytic dimers of gold atoms make ethylene from methane

Golden Pairs

Weinheim, Germany | Posted on January 19th, 2010

Ethylene (ethene, CH2=CH2) is a primary feedstock for chemical industry, and particularly for the production of plastics like polyethylene and polystyrene. Ethylene is currently made by the steam cracking of fossil fuel fractions. A possible alternative to this may be the production of ethylene from methane (CH4), because although fossil fuel supplies are slowly declining, methane is still found in giant natural gas deposits. The problem is that the carbon-hydrogen bonds in methane are very difficult to break. It thus usually takes extreme conditions to induce the carbon in methane to form bonds with other carbon atoms. Furthermore, this reaction usually produces a mixture. Scientists working with Thorsten M. Bernhardt at the University of Ulm (Germany) and Uzi Landman at the Georgia Institute of Technology (Atlanta, USA), have now found a process by which methane can be selectively converted into ethylene at low pressures and temperatures. Free gold dimers catalyze the reaction, the researchers report in the journal Angewandte Chemie.

"Methane activation, meaning the ‘cracking' of C-H bonds, is a very complex process," explain the scientists, "which must be understood at the molecular level before practically applicable catalytic processes can be developed." To investigate this, the team carried out experiments with different catalytic metal clusters (aggregates of a few metal atoms) as model systems. In tests with particles made of a few gold atoms, they found that positively charged particles made of two gold atoms (Au2+) selectively convert methane into ethylene in the gas phase.

Through experiments in which intermediates of the reaction were "trapped", as well as model computations, the researchers were able to formulate a reaction mechanism for this catalytic cycle. Each gold atom of the gold dimers binds to a methane molecule; hydrogen is split off and the two carbon atoms form a single bond to each other. This ethylene precursor initially remains bound to one of the gold atoms, and the freed gold atom binds to a new methane molecule. In the last step, another methane molecule displaces the ethylene precursor from its spot on the gold atom and ethylene is released. At this point the reaction cycle can begin again.

"Both the activation of the carbon-hydrogen bonds of the methane and the subsequent splitting off of the ethylene molecule require cooperative action of several atoms bound to the gold dimer," Berhnardt and Landman explain further details of the mechanism. "Our insights are not only of fundamental interest, but may also be of practical use."

Author: Thorsten M. Bernhardt, Universität Ulm (Germany), www.uni-ulm.de/iok/bernhardt/

Title: Methane Activation and Catalytic Ethylene Formation on Free Au2+ Ions

Angewandte Chemie International Edition 2010, 49, No. 5, 980-983,

Permalink: dx.doi.org/10.1002/anie.200905643

####

About Wiley InterScience
Wiley InterScience (www.interscience.wiley.com) provides access to over 3 million articles across nearly 1500 journals and 7000 Online Books and major reference works. It also holds industry leading databases such as The Cochrane Library, chemistry databases and the acclaimed Current Protocols laboratory manuals.

Wiley InterScience is one of the world's premiere resources for study, teaching and advanced research.

For more information, please click here

Contacts:
Editorial office


Amy Molnar (US)


Jennifer Beal (UK)


Alina Boey (Asia)

Copyright © Wiley InterScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Chemistry

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Phononic SEIRA -- enhancing light-molecule interactions via crystal lattice vibrations April 10th, 2018

Design approach developed for important new catalysts for energy conversion and storage: New method could aid in design of pharmaceuticals and optical and data storage materials March 21st, 2018

New 4-D printer could reshape the world we live in March 20th, 2018

Announcements

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Industrial

Leti and Inac Show Path to Creating Building Blocks of Quantum Processors With 28Si isotope in a CMOS Line: Fabrication of Isotopically Enriched, Industry-Compatible Wafers Points Way To Realizing Silicon Spin Quantum Bits with Enhanced Fidelity March 20th, 2018

Glass matters: UCSB researchers find that the chemical topology of silica can influence the effectiveness of many chemical processes that use it March 14th, 2018

Big steps toward control of production of tiny building blocks March 9th, 2018

GLOBALFOUNDRIES Strengthens 22FDX® eMRAM Platform with eVaderis’ Ultra-low Power MCU Reference Design: Co-developed technology solution enables significant power and die size reductions for IoT and wearable products February 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project