Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Golden Pairs

Au pairs: Whereas one methane molecule is not dehydrogenated by free gold-dimer cations, the cooperative interaction of two methane ligands initiates a catalytic formation of ethylene. The cycle is closed by the adsorption of a third methane molecule that cooperatively activates the release of ethylene (see scheme yellow Au, green C, blue H). This cycle is derived from ab initio calculations and gas-phase reaction kinetics measurements.
Au pairs: Whereas one methane molecule is not dehydrogenated by free gold-dimer cations, the cooperative interaction of two methane ligands initiates a catalytic formation of ethylene. The cycle is closed by the adsorption of a third methane molecule that cooperatively activates the release of ethylene (see scheme yellow Au, green C, blue H). This cycle is derived from ab initio calculations and gas-phase reaction kinetics measurements.

Abstract:
Catalytic dimers of gold atoms make ethylene from methane

Golden Pairs

Weinheim, Germany | Posted on January 19th, 2010

Ethylene (ethene, CH2=CH2) is a primary feedstock for chemical industry, and particularly for the production of plastics like polyethylene and polystyrene. Ethylene is currently made by the steam cracking of fossil fuel fractions. A possible alternative to this may be the production of ethylene from methane (CH4), because although fossil fuel supplies are slowly declining, methane is still found in giant natural gas deposits. The problem is that the carbon-hydrogen bonds in methane are very difficult to break. It thus usually takes extreme conditions to induce the carbon in methane to form bonds with other carbon atoms. Furthermore, this reaction usually produces a mixture. Scientists working with Thorsten M. Bernhardt at the University of Ulm (Germany) and Uzi Landman at the Georgia Institute of Technology (Atlanta, USA), have now found a process by which methane can be selectively converted into ethylene at low pressures and temperatures. Free gold dimers catalyze the reaction, the researchers report in the journal Angewandte Chemie.

"Methane activation, meaning the ‘cracking' of C-H bonds, is a very complex process," explain the scientists, "which must be understood at the molecular level before practically applicable catalytic processes can be developed." To investigate this, the team carried out experiments with different catalytic metal clusters (aggregates of a few metal atoms) as model systems. In tests with particles made of a few gold atoms, they found that positively charged particles made of two gold atoms (Au2+) selectively convert methane into ethylene in the gas phase.

Through experiments in which intermediates of the reaction were "trapped", as well as model computations, the researchers were able to formulate a reaction mechanism for this catalytic cycle. Each gold atom of the gold dimers binds to a methane molecule; hydrogen is split off and the two carbon atoms form a single bond to each other. This ethylene precursor initially remains bound to one of the gold atoms, and the freed gold atom binds to a new methane molecule. In the last step, another methane molecule displaces the ethylene precursor from its spot on the gold atom and ethylene is released. At this point the reaction cycle can begin again.

"Both the activation of the carbon-hydrogen bonds of the methane and the subsequent splitting off of the ethylene molecule require cooperative action of several atoms bound to the gold dimer," Berhnardt and Landman explain further details of the mechanism. "Our insights are not only of fundamental interest, but may also be of practical use."

Author: Thorsten M. Bernhardt, Universität Ulm (Germany), www.uni-ulm.de/iok/bernhardt/

Title: Methane Activation and Catalytic Ethylene Formation on Free Au2+ Ions

Angewandte Chemie International Edition 2010, 49, No. 5, 980-983,

Permalink: dx.doi.org/10.1002/anie.200905643

####

About Wiley InterScience
Wiley InterScience (www.interscience.wiley.com) provides access to over 3 million articles across nearly 1500 journals and 7000 Online Books and major reference works. It also holds industry leading databases such as The Cochrane Library, chemistry databases and the acclaimed Current Protocols laboratory manuals.

Wiley InterScience is one of the world's premiere resources for study, teaching and advanced research.

For more information, please click here

Contacts:
Editorial office


Amy Molnar (US)


Jennifer Beal (UK)


Alina Boey (Asia)

Copyright © Wiley InterScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

Chemistry

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Announcements

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Industrial

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Non-Enzyme Sensor Detects Lead, Hydrogen Peroxide July 10th, 2014

New Method Introduced for Synthesis of Hydroxyapatite Nanoparticles July 5th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE