Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Chaperones for climate protection

Rubisco binds carbon dioxide and facilitates the conversion to sugar and oxygen.  Image: Andreas Bracher / Max Planck Institute of Biochemistry
Rubisco binds carbon dioxide and facilitates the conversion to sugar and oxygen. Image: Andreas Bracher / Max Planck Institute of Biochemistry

Abstract:
The protein Rubisco locks up carbon dioxide / Biochemists synthesis Rubisco in the test tube for the first time

Chaperones for climate protection

Munich, Germany | Posted on January 16th, 2010

The World Climate Conference recently took place. Reports about carbon dioxide levels, rising temperatures and melting glaciers appear daily. Scientists from the Max Planck Institute (MPI) of Biochemistry and the Gene Center of Ludwig Maximilians University Munich have now succeeded in rebuilding the enzyme Rubisco, the key protein in carbon dioxide fixation. "Rubisco is one of the most important proteins on the planet, yet despite this, it is also one of the most inefficient", says Manajit Hayer-Hartl, a group leader at the MPI of Biochemistry. The researchers are now working on modifying the artificially produced Rubisco so that it will convert carbon dioxide more efficiently than the original protein. Their work has now been published in Nature (Nature, January 14, 2010).

Photosynthesis is one of the most important biological processes. Plants metabolize carbon dioxide and water into oxygen and sugar in the presence of light. Without this process, life on earth as we know it would not be possible. The key protein in photosynthesis, Rubisco, is thus one of the most important proteins in nature. It bonds with carbon dioxide and starts its conversion into sugar and oxygen. "But this process is really inefficient", explains Manajit Hayer-Hartl. "Rubisco not only reacts with carbon dioxide but also quite often with oxygen." This did not cause any problems with the protein developed three billion years ago. Back then, there was no oxygen present in the atmosphere. However, as more and more oxygen accumulated, Rubisco could not adjust to this change.

The protein Rubisco is a large complex consisting of 16 subunits. Up to now, its complex structure made it impossible to reconstruct Rubisco in the laboratory. To overcome this obstacle, scientists at the MPI of Biochemistry and at the Gene Center of the Ludwig Maximilians University Munich used the help of cellular chaperones. The French term chaperone describes a woman who accompanies a young lady to a date and takes care that the young gentleman will not approach her protégé improperly. The molecular chaperones within the cell work in a similar way: They ensure that only the correct parts of a newly synthesized protein will come together. As a result of this process, the protein acquires its correct three dimensional structure. "With 16 subunits like those of Rubisco, the risk is very high that the wrong parts of the protein clump together and form useless aggregates," says the biochemist. Only with its correct structure will Rubisco be able to fulfil its function in plants.

The MPI researchers showed that two different chaperone systems, called GroEL and RbcX, are necessary to produce a functional Rubisco complex. The next aim of the scientists is to genetically modify Rubisco so that it bonds with carbon dioxide more often and metabolizes oxygen less frequently. "Because the modified Rubisco is predicted to absorb carbon dioxide from the atmosphere more effectively," says Manajit Hayer-Hartl, "it would enhance crop yields and could also be interesting for climate protection."

Related links:

[1] Chaperonin-assisted Protein Folding www.biochem.mpg.de/en/rg/hayer-hartl/

Original work:

C. Liu, A. L. Young, A. Starling-Windhof, A. Bracher, S. Saschenbrecker, B. Vasudeva Rao, K. Vasudeva Rao, O. Berninghausen, T. Mielke, F. U. Hartl, R. Beckmann and M. Hayer-Hartl
Coupled chaperone action




####

About Max Planck Society
The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universities are not in a position to accommodate or deal with adequately. These interdisciplinary research areas often do not fit into the university organization, or they require more funds for personnel and equipment than those available at universities. The variety of topics in the natural sciences and the humanities at Max Planck Institutes complement the work done at universities and other research facilities in important research fields. In certain areas, the institutes occupy key positions, while other institutes complement ongoing research. Moreover, some institutes perform service functions for research performed at universities by providing equipment and facilities to a wide range of scientists, such as telescopes, large-scale equipment, specialized libraries, and documentary resources.

For more information, please click here

Contacts:
Dr. Manajit Hayer-Hartl
Max Planck Institute of Biochemistry, Martinsried


Anja Konschak, Public Relations
Max Planck Institute of Biochemistry, Martinsried
Tel.: +49 89 8578-2824

Copyright © Max Planck Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Possible Futures

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Discoveries

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Announcements

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Food/Agriculture/Supplements

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Graphene-infused packaging is a million times better at blocking moisture July 15th, 2016

Environment

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Mathematical nanotoxicoproteomics: Quantitative characterization of effects of multi-walled carbon nanotubes: This research article by Dr. Subhash Basak et al. will be published in Current Computer-Aided Drug Design, Volume 12, 2016 September 2nd, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Nanobiotechnology

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic