Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoprobes hit targets in tumors, could lessen chemo side effects

Abstract:
A variety of nanoparticles have shown to be effective in delivering cancer drugs more directly to tumor cells, mitigating the damage to nearby healthy cells. Now, researchers from Purdue University have demonstrated that these nanoparticles are getting their drug payloads to the correct intracellular compartments.

Nanoprobes hit targets in tumors, could lessen chemo side effects

Bethesda, MD | Posted on January 14th, 2010

Joseph Irudayaraj, Ph.D., and graduate student Jiji Chen have found that gold nanorods coated with the breast cancer drug Herceptin are reaching the endosomes of cells, mimicking the delivery of the drug on its own. Endosomes perform a sorting function to deliver drugs and other substances to the appropriate locations.

"We have demonstrated the ability to track these nanoparticles in different cellular compartments of live cells and show where they collect quantitatively," said Dr. Irudayaraj, whose results were published in the journal ACS Nano. "Our methods will allow us to calculate the quantities of a drug needed to treat a cancer cell because now we know how these nanoparticles are being distributed to different parts of the cell."

The nanoprobes used in this study are made from gold and magnetic particles. An MRI scanner can track the magnetic portions of the nanoprobes while a more sensitive microscopy process known as fluorescence correlation spectroscopy, which is capable of detecting single molecules, can spot the gold. The nanoprobes were inserted into live human tumor cells during laboratory testing. Using fluorescent markers to differentiate organelles, or sub-units of cells, Dr. Irudayaraj and his graduate student were able to determine the number of nanoprobes accumulating in the endosomes, lysosomes and membranes of those cells.

In this study, endosomes received a major portion of the nanorods containing Herceptin. Lysosomes, which act like garbage collection units in cells and hinder a drug's effectiveness, received a lower concentration of nanorods. Dr. Irudayaraj said those percentages are similar to how cells distribute drugs through traditional treatments. He will next try to attach multiple drugs to a nanoparticle and track their distribution within cells. He also wants to determine the timing of a drug's release from the nanoprobes after attaching to the tumor cells.

This work is detailed in a paper titled, "Quantitative investigation of compartmentalized dynamics of ErbB2 targeting gold nanoparticles in live cells by single molecule spectroscopy." An abstract of this paper is available on the journal's Web site.

View abstract here pubs.acs.org/doi/abs/10.1021/nn900743v

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with todays explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Nanomedicine

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Nanobiotechnology

Harris & Harris Group Invests in Unique NYC Biotech Accelerator July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE