Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Combining Nanotubes and Antibodies for Breast Cancer 'Search and Destroy' Missions

Abstract:
Single-walled carbon nanotubes have been highly touted for their potential as novel delivery agents for cancer detection and therapeutic agents. Now, a team of investigators from six institutions have created a multifunctional carbon nanotube that can detect and destroy an aggressive form of breast cancer.

Combining Nanotubes and Antibodies for Breast Cancer 'Search and Destroy' Missions

Bethesda, MD | Posted on January 14th, 2010

HER2 is one of a family of genes that help regulate the growth and proliferation of human cells. Normal cells have two copies of HER2, but about 20 to 25 percent of breast cancers consist of cells have multiple copies of the gene, resulting in the overproduction of a HER2-encoded protein that is associated with particularly fast growing and difficult to treat tumors. About 40,000 women in the United States are diagnosed annually with this form of breast cancer.

In a paper published in the journal BMC Cancer, the team led by Huixin He, Ph.D., of Rutgers University, and Yan Xiao, Ph.D., of the National Institute of Standards and Technology (NIST), described how it created the new dual-purpose nanostructure by attaching an anti-HER2 antibody to short carbon nanotubes. But rather than use a human anti-HER2 antibody, the investigators used an antibody raised in chickens. The distinct genetic differences between avian and human species enabled the chicken antibody to react strongly with the target protein expressed on tumor cells while ignoring normal cells with other human proteins.

The investigators then took advantage of two unique optical properties of carbon nanotubes to detect and then destroy HER2 breast cancer cells. Near-infrared laser light at a wavelength of 785 nanometers reflects intensely off the nanotubes, and this strong signal is easily detected by a technique called Raman spectroscopy. Increase the laser light's wavelength to 808 nanometers and it will be absorbed by the nanotubes, incinerating them and anything to which they're attached—in this case, the HER2 tumor cells.

The experiment described in the BMC Cancer paper was conducted in laboratory cell cultures. Using the HER2 antibody-nanotube complex to selectively identify and target HER2 tumors resulted in a nearly 100 percent eradication of the cancer cells while nearby normal cells remained unharmed. In comparison, there only was a slight reduction in cancer cells for cultures treated with anti-HER2 antibody alone.

The next step for the research team is to conduct mouse trials of the antibody-nanotube complex to see if the dramatic cancer-killing ability works in animals as well as it does in the lab. In a separate but related project, the team hopes to use a nanotube-antibody combination against another tumor cell protein, MUC4, to treat pancreatic cancer.

The research, which is detailed in a paper titled, "Anti-Her2IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cels," was funded under an interagency agreement between NIST and the National Cancer Institute (NCI). Along with scientists from NIST and Rutgers, the research team included members from Cornell University, the New Jersey Institute of Technology, NCI and Translabion, a private company located in Clarksburg, Md. This paper is available at no charge at the journal's Web site.

View paper here dx.doi.org/doi:10.1186/1471-2407-9-351

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Nanotubes/Buckyballs

Tiny carbon nanotube pores make big impact October 29th, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Nanomedicine

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Announcements

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Nanobiotechnology

Tiny carbon nanotube pores make big impact October 29th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE