Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Combining Nanotubes and Antibodies for Breast Cancer 'Search and Destroy' Missions

Abstract:
Single-walled carbon nanotubes have been highly touted for their potential as novel delivery agents for cancer detection and therapeutic agents. Now, a team of investigators from six institutions have created a multifunctional carbon nanotube that can detect and destroy an aggressive form of breast cancer.

Combining Nanotubes and Antibodies for Breast Cancer 'Search and Destroy' Missions

Bethesda, MD | Posted on January 14th, 2010

HER2 is one of a family of genes that help regulate the growth and proliferation of human cells. Normal cells have two copies of HER2, but about 20 to 25 percent of breast cancers consist of cells have multiple copies of the gene, resulting in the overproduction of a HER2-encoded protein that is associated with particularly fast growing and difficult to treat tumors. About 40,000 women in the United States are diagnosed annually with this form of breast cancer.

In a paper published in the journal BMC Cancer, the team led by Huixin He, Ph.D., of Rutgers University, and Yan Xiao, Ph.D., of the National Institute of Standards and Technology (NIST), described how it created the new dual-purpose nanostructure by attaching an anti-HER2 antibody to short carbon nanotubes. But rather than use a human anti-HER2 antibody, the investigators used an antibody raised in chickens. The distinct genetic differences between avian and human species enabled the chicken antibody to react strongly with the target protein expressed on tumor cells while ignoring normal cells with other human proteins.

The investigators then took advantage of two unique optical properties of carbon nanotubes to detect and then destroy HER2 breast cancer cells. Near-infrared laser light at a wavelength of 785 nanometers reflects intensely off the nanotubes, and this strong signal is easily detected by a technique called Raman spectroscopy. Increase the laser light's wavelength to 808 nanometers and it will be absorbed by the nanotubes, incinerating them and anything to which they're attached—in this case, the HER2 tumor cells.

The experiment described in the BMC Cancer paper was conducted in laboratory cell cultures. Using the HER2 antibody-nanotube complex to selectively identify and target HER2 tumors resulted in a nearly 100 percent eradication of the cancer cells while nearby normal cells remained unharmed. In comparison, there only was a slight reduction in cancer cells for cultures treated with anti-HER2 antibody alone.

The next step for the research team is to conduct mouse trials of the antibody-nanotube complex to see if the dramatic cancer-killing ability works in animals as well as it does in the lab. In a separate but related project, the team hopes to use a nanotube-antibody combination against another tumor cell protein, MUC4, to treat pancreatic cancer.

The research, which is detailed in a paper titled, "Anti-Her2IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cels," was funded under an interagency agreement between NIST and the National Cancer Institute (NCI). Along with scientists from NIST and Rutgers, the research team included members from Cornell University, the New Jersey Institute of Technology, NCI and Translabion, a private company located in Clarksburg, Md. This paper is available at no charge at the journal's Web site.

View paper here dx.doi.org/doi:10.1186/1471-2407-9-351

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project