Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NIST Scientists Quantify Nanoparticle-Protein Interactions

Insulin, one of the most common proteins in human blood, can accumulate into fibrous masses when it misfolds. Research by a team at NIST indicates that gold nanoparticles apparently increase insulin's tendency to form these fibers. (Color added for clarity.)
Insulin, one of the most common proteins in human blood, can accumulate into fibrous masses when it misfolds. Research by a team at NIST indicates that gold nanoparticles apparently increase insulin's tendency to form these fibers. (Color added for clarity.)

Abstract:
A research team at the National Institute of Standards and Technology (NIST) has quantified the interaction of gold nanoparticles with important proteins found in human blood, an approach that should be useful in the development of nanoparticle-based medical therapies and for better understanding the physical origin of the toxicity of certain nanoparticles.

NIST Scientists Quantify Nanoparticle-Protein Interactions

Gaithersburg, MD | Posted on January 14th, 2010

Nanoparticles show promise as vehicles for drug delivery, as medical diagnostic tools, and as a cancer treatment agent in their own right. Gold nanoparticles, spheres that vary in size between 5 and 100 billionths of a meter in diameter, are especially useful because of the many ways their metal surfaces can be "functionalized" by attaching tailored molecules to perform different tasks in the body. However, treatments require a large number of particles to be injected into the bloodstream, and these could be hazardous if they interact with the body in unforeseen ways.

According to NIST materials scientist Jack Douglas, one of the principal problems confronting nanomedicine is the tendency of proteins to stick to the nanoparticles that float freely in the bloodstream. "Nanoparticles coated with proteins will generally alter their interaction with the body and the nanoparticles can be expected to induce a complementary change in protein chemical activity," says Douglas. "The coating also can cause the nanoparticles to clump together in large aggregates, which can provoke a huge immune response. Of course, that's something you want to avoid."

Scientists have a poor understanding of these interactions, so the NIST team decided to explore what happens when nanoparticles of different sizes encounter five common blood proteins. With the aid of a bevy of microscopes and spectroscopy devices, the team found several general patterns of behavior. "Once the proteins stick to the nanoparticles, the optical properties of both the particles and the proteins change," Douglas says. "Measuring these changes helps us quantify the stickiness of the nanoparticle for the proteins, the thickness of the adsorbed protein layer and the propensity of the particles to aggregate due to the presence of the protein layers."

More specifically, the team learned that all five of the proteins stuck to the gold, causing the NPs to aggregate, and that increasing the spheres' diameter increased their stickiness. They also found that this aggregation usually caused some change in the shape of the proteins—"which generally implies some change in their function as well," Douglas says.

Aggregation does not always lead to a toxic response, Douglas says, but can affect whether the drugs on the nanoparticles ever reach their intended target. "The main thing is that interactions are largely set by the existence of the protein layer," he says. "You want to know something about these protein layers if you want to know what nanoparticles are going to do in the body."

Douglas says that the NIST study addresses metrology needs identified in a National Research Council report** published this past year calling for more quantitative testing for nanoparticle interactions with biological media and that much more work is needed along this and other lines. "For example, we do not yet understand how different-sized particles bind to the surface membranes of cells, which is where many drug interactions take place," he says.

* S.H.D. Lacerda, J. Park, C. Meuse, D. Pristinski, M.L. Becker, A. Karim and J.F. Douglas. Interaction of gold nanoparticles with common human blood proteins. ACS Nano, December 18, 2009, DOI: 10.1021/nn9011187.

** NRC report, "Review of Federal Strategy for Nanotechnology-Related Environmental, Health, and Safety Research," available online at www.nap.edu/catalog.php?record_id=12559#toc



####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact
Chad Boutin

(301) 975-4261

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Nanomedicine

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE