Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > ‘Wet’ computing systems to boost processing power

Abstract:
A new kind of information processing technology inspired by chemical processes in living systems is being developed by researchers at the University of Southampton.

‘Wet’ computing systems to boost processing power

UK | Posted on January 12th, 2010

Dr Maurits de Planque and Dr Klaus-Peter Zauner at the University's School of Electronics and Computer Science (ECS) are working on a project which has just received €1.8 million from the European Union's Future and Emerging Technologies (FET) Proactive Initiatives, which recognises ground-breaking work which has already demonstrated important potential.

The researchers, Dr de Planque, a biochemist, and Dr Zauner, a computer scientist, will adapt brain processes to a 'wet' information processing scenario by setting up chemicals in a tube which behave like the transistors in a computer chip.

"What we are developing here is a very crude, minimal liquid brain and the final computer will be ‘wet' just like our brain," said Dr Zauner. "People realise now that the best information processes we have are in our heads and as we are increasingly finding that silicon has its limitations in terms of information processing, we need to explore other approaches, which is exactly what we are doing here."

The project, entitled Artificial Wet Neuronal Networks from Compartmentalised Excitable Chemical Material, which is being co-ordinated by Friedrich Schiller University Jena with other project partners, the University of the West of England, Bristol and the Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, will run for three years and involves three complementary objectives.

The first is to engineer lipid-coated water droplets, inspired by biological cells, containing an excitable chemical medium and then to connect the droplets into networks in which they can communicate through chemical signals. The second objective is to design information-processing architectures based on the droplets and to demonstrate purposeful information processing in droplet architectures. The third objective is to establish and explore the potential and limitations of droplet architectures.

"Our system will copy some key features of neuronal pathways in the brain and will be capable of excitation, self-repair and self-assembly," said Dr de Planque.

####

About University of Southampton
The University of Southampton is already one of the top 15 research universities in the UK and has achieved consistently high scores for its teaching and learning activities.

For more information, please click here

Contacts:
Sarah Watts
Media Relations Manager
Email:
Tel: 023 8059 3807

Copyright © University of Southampton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project