Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ‘Wet’ computing systems to boost processing power

Abstract:
A new kind of information processing technology inspired by chemical processes in living systems is being developed by researchers at the University of Southampton.

‘Wet’ computing systems to boost processing power

UK | Posted on January 12th, 2010

Dr Maurits de Planque and Dr Klaus-Peter Zauner at the University's School of Electronics and Computer Science (ECS) are working on a project which has just received €1.8 million from the European Union's Future and Emerging Technologies (FET) Proactive Initiatives, which recognises ground-breaking work which has already demonstrated important potential.

The researchers, Dr de Planque, a biochemist, and Dr Zauner, a computer scientist, will adapt brain processes to a 'wet' information processing scenario by setting up chemicals in a tube which behave like the transistors in a computer chip.

"What we are developing here is a very crude, minimal liquid brain and the final computer will be ‘wet' just like our brain," said Dr Zauner. "People realise now that the best information processes we have are in our heads and as we are increasingly finding that silicon has its limitations in terms of information processing, we need to explore other approaches, which is exactly what we are doing here."

The project, entitled Artificial Wet Neuronal Networks from Compartmentalised Excitable Chemical Material, which is being co-ordinated by Friedrich Schiller University Jena with other project partners, the University of the West of England, Bristol and the Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, will run for three years and involves three complementary objectives.

The first is to engineer lipid-coated water droplets, inspired by biological cells, containing an excitable chemical medium and then to connect the droplets into networks in which they can communicate through chemical signals. The second objective is to design information-processing architectures based on the droplets and to demonstrate purposeful information processing in droplet architectures. The third objective is to establish and explore the potential and limitations of droplet architectures.

"Our system will copy some key features of neuronal pathways in the brain and will be capable of excitation, self-repair and self-assembly," said Dr de Planque.

####

About University of Southampton
The University of Southampton is already one of the top 15 research universities in the UK and has achieved consistently high scores for its teaching and learning activities.

For more information, please click here

Contacts:
Sarah Watts
Media Relations Manager
Email:
Tel: 023 8059 3807

Copyright © University of Southampton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Chemistry

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Possible Futures

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Chip Technology

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Alliances/Trade associations/Partnerships/Distributorships

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

GLOBALFOUNDRIES and Soitec Enter Into Long-term Supply Agreement on FD-SOI Wafers: Strategic milestone to help guarantee a secure, high-volume supply of FD-SOI technology September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project