Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Leti Says HELIOS Achievements in First Year Focus on Light Photodetection, Coupling and Routing

Abstract:
19-partner Project to Maintain Europe's Leadership in Integrating Photonics and CMOS Combines Top R&D Labs and Companies' Commercialization Expertise

Leti Says HELIOS Achievements in First Year Focus on Light Photodetection, Coupling and Routing

Grenoble, France | Posted on January 12th, 2010

Leti, coordinator of the pan-European consortium HELIOS (www.helios-project.eu), today announced that the 19 partners have met or exceeded their phase-one goals for the large-scale CMOS photonics project.

Launched by the European Commission in 2008, the €8.5 million project is designed to develop microelectronics fabrication processes for integrating photonics with CMOS circuits and to make the technology available to a wide variety of users.

The participants include the major European CMOS photonics and electronics research centers and companies and potential users of the technology. The project will drive the European RTD in CMOS photonics and pave the way for industrial development.

First-phase achievements of HELIOS have concentrated on light photodetection and light coupling/routing; the related successfully completed milestones include:

· Characterization of vertical and lateral PIN Ge and III-V MSM photodetectors, showing low dark current, high optical responsivity and high optical bandwidth compatible with 40 Gb/s operation
· Demonstration of germanium photodiode bandwidth of 90GHz
· Demonstration of inverted taper coupling structure with 1dB coupling loss
· Design and fabrication of a transition between rib/strip waveguides with less than 0.2dB measured losses
· Demonstration of a high-efficiency grating coupler showing a coupling efficiency of -1.6dB and a 3dB bandwidth of 80nm
· More than 30 publications in international conferences or journals
· Organization of a winter school and two international events

"Europe has a well-established photonics-components industry and it is strategically important for us to maintain photonic chip design and chip-integrating functions that provide new opportunities for our microelectronics companies and enable us to compete with other countries," said Laurent Malier, CEO of Leti. "HELIOS combines the advanced, upstream research on CMOS photonics from leading research laboratories and universities with the commercialization expertise of some of Europe's leading technology companies that will make this technology commercially viable."

CMOS photonics is an intensely active research topic in many countries around the world, which increases the urgency for innovative results from HELIOS. The project's success in developing microelectronics fabrication processes for integrating photonics with CMOS circuits would cement Europe's role as a global leader in this emerging technology. It will also have a major impact on the industry by, for example, leading to low-cost solutions for a range of applications: optical communications, optical interconnections between semiconductor chips and circuit boards, optical signal processing, optical sensing, and biological applications. By co-integrating optics and electronics on the same chip, high- functionality, high-performance and highly integrated devices can be fabricated, while using a well-mastered microelectronics fabrication process. In addition, advances in CMOS photonics will move the emphasis from device component to architecture. Industrial and RTD efforts then could be focused on new products or new functionalities rather than on the technology level.

The four-year HELIOS project includes the development of such essential building blocks as efficient sources (silicon-based and heterogeneous integration of III-V on silicon), fast modulators and, more long term, the combination and packaging of these building blocks for the demonstration of complex functions to address a variety of industrial needs.

These include a 40Gb/s modulator on an electronic IC, a 16x10 Gb/s transceiver for WDM-PON applications, a photonic QAM-10Gb/s wireless transmission system and a mixed-analog and digital transceiver module for multifunction antennas.

Other top priorities of the project are:

* Development of high-performance generic building blocks that can be used for a broad range of applications, ranging from WDM sources by III-V/Si heterogeneous integration, fast modulators and detectors, passive circuits and packaging.
* Building and optimizing the entire supply chain to fabricate complex functional devices.
* Photonics/electronics convergence will be addressed at the process level and also at the design level as HELIOS helps develop an adequate design environment.
* Investigating promising approaches that offer clear advantages in terms of integration on CMOS for next-generation CMOS photonics devices.
* Road mapping, dissemination and training to strengthen European activities in this field and to increase awareness of new users about the potential of CMOS photonics.

As coordinator of HELIOS, which includes nearly 60 researchers from member organizations, Leti is responsible for the technical, administrative and financial management of the project and for the day-to-day technical monitoring, direction and progress on the project. Leti also is a key contributor to the development of building blocks and integration processes that are part of HELIOS,

In addition to Leti, the HELIOS partners are:

- IMEC (Belgium)
- CNRS (France)
- Alcatel Thales III-V lab (France)
- University of Surrey (UK)
- IMM (Italy)
- University of Paris-Sud (France)
- University of Valencia (Spain)
- University of Trento (Italy)
- University of Barcelona (Spain)
- 3S Photonics (France)
- IHP (Germany)
- Berlin University of Technology (Germany)
- Thales (France)
- DAS Photonics (Spain)
- Austriamicrosystems AG (Austria)
- University of Vienna (Austria)
- Phoenix BV (Netherlands)
- Photline Technologies (France)

####

About Leti
CEA is a French research and technology public organisation, with activities in three main areas: energy, technologies for information and healthcare, and defence and security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and microsystems (MEMS) are at the core of its activities. As a major player in MINATEC excellence centre, Leti operates 8,000-m˛ state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, Leti puts a strong emphasis on intellectual property and owns more than 1,400 patent families.

For more information, please click here

Contacts:
CEA-Leti
Thierry Bosc
+33 4 38 78 31 95


Laurent Fulbert
Photonics Programs Manager
+33 4 38 78 38 45


Agency
Sarah-Lyle Dampoux
+33 1 58 18 59 30

Copyright © Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Chip Technology

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

Nanoelectronics

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

What a twist: Silicon nanoantennas turn light around: The theoretical results will allow scientists to design nanodevices with extraordinary features for use in optoelectronics November 21st, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

UCR researchers discover new method to dissipate heat in electronic devices: By modulating the flow of phonons through semiconductor nanowires, engineers can create smaller and faster devices November 13th, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Photonics/Optics/Lasers

Controlled electron pulses November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Arrowhead and Spring Bank Announce Clinical Collaboration for ARC-520 and SB 9200 in Chronic Hepatitis B October 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project