Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum computer calculates exact energy of molecular hydrogen

Abstract:
Groundbreaking approach could impact fields from cryptography to materials science

Quantum computer calculates exact energy of molecular hydrogen

Cambridge, MA | Posted on January 11th, 2010

In an important first for a promising new technology, scientists have used a quantum computer to calculate the precise energy of molecular hydrogen. This groundbreaking approach to molecular simulations could have profound implications not just for quantum chemistry, but also for a range of fields from cryptography to materials science.

"One of the most important problems for many theoretical chemists is how to execute exact simulations of chemical systems," says author Alán Aspuru-Guzik, assistant professor of chemistry and chemical biology at Harvard University. "This is the first time that a quantum computer has been built to provide these precise calculations."

The work, described this week in Nature Chemistry, comes from a partnership between Aspuru-Guzik's team of theoretical chemists at Harvard and a group of experimental physicists led by Andrew White at the University of Queensland in Brisbane, Australia. Aspuru-Guzik's team coordinated experimental design and performed key calculations, while his partners in Australia assembled the physical "computer" and ran the experiments.

"We were the software guys," says Aspuru-Guzik, "and they were the hardware guys."

While modern supercomputers can perform approximate simulations of simple molecular systems, increasing the size of the system results in an exponential increase in computation time. Quantum computing has been heralded for its potential to solve certain types of problems that are impossible for conventional computers to crack.

Rather than using binary bits labeled as "zero" and "one" to encode data, as in a conventional computer, quantum computing stores information in qubits, which can represent both "zero" and "one" simultaneously. When a quantum computer is put to work on a problem, it considers all possible answers by simultaneously arranging its qubits into every combination of "zeroes" and "ones."

Since one sequence of qubits can represent many different numbers, a quantum computer would make far fewer computations than a conventional one in solving some problems. After the computer's work is done, a measurement of its qubits provides the answer.

"Because classical computers don't scale efficiently, if you simulate anything larger than four or five atoms -- for example, a chemical reaction, or even a moderately complex molecule -- it becomes an intractable problem very quickly," says author James Whitfield, research assistant in chemistry and chemical biology at Harvard. "Approximate computations of such systems are usually the best chemists can do."

Aspuru-Guzik and his colleagues confronted this problem with a conceptually elegant idea.

"If it is computationally too complex to simulate a quantum system using a classical computer," he says, "why not simulate quantum systems with another quantum system?"

Such an approach could, in theory, result in highly precise calculations while using a fraction the resources of conventional computing.

While a number of other physical systems could serve as a computer framework, Aspuru-Guzik's colleagues in Australia used the information encoded in two entangled photons to conduct their hydrogen molecule simulations. Each calculated energy level was the result of 20 such quantum measurements, resulting in a highly precise measurement of each geometric state of molecular hydrogen.

"This approach to computation represents an entirely new way of providing exact solutions to a range of problems for which the conventional wisdom is that approximation is the only possibility," says Aspuru-Guzik.

Ultimately, the same quantum computer that could transform Internet cryptography could also calculate the lowest energy conformations of molecules as complex as cholesterol.

Aspuru-Guzik and Whitfield's Harvard co-authors on the Nature Chemistry paper are Ivan Kassal, Jacob D. Biamonte, and Masoud Mohseni. Financial support was provided by the US Army Research Office and the Australian Research Council Federation Fellow and Centre of Excellence programs. Aspuru-Guzik recently received support from the DARPA Young Investigator Program, the Alfred P. Sloan Foundation, and the Camille and Henry Dreyfus Foundation to pursue research towards practical quantum simulators.

####

For more information, please click here

Contacts:
Steve Bradt

617-496-8070

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ANU invention to inspire new night-vision specs December 7th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Possible Futures

ANU invention to inspire new night-vision specs December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Quantum Computing

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Announcements

ANU invention to inspire new night-vision specs December 7th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Quantum nanoscience

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Scientists set traps for atoms with single-particle precision: Technique may enable large-scale atom arrays for quantum computing November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project