Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New superconductivity mechanism found in iron compound

STM scan showing a 96-nanometer square of an iron-based superconductor shows electrons lined up in parallel rows suggesting a 'liquid-crystal' state of the electron fluid. The parallel arrangements appear in random domains across the entire crystal, oriented either vertically or horizontally. The diagonal line across this image is the boundary between two domains. The discovery of this arrangement indicates that the mechanism of iron-based superconductors is more complex than previously believed, and may be similar to the mechanism in cuprates.
STM scan showing a 96-nanometer square of an iron-based superconductor shows electrons lined up in parallel rows suggesting a 'liquid-crystal' state of the electron fluid. The parallel arrangements appear in random domains across the entire crystal, oriented either vertically or horizontally. The diagonal line across this image is the boundary between two domains. The discovery of this arrangement indicates that the mechanism of iron-based superconductors is more complex than previously believed, and may be similar to the mechanism in cuprates.

Abstract:
A surprising discovery by Cornell researchers of electronic liquid crystal states in an iron-based, high-temperature superconductor is another step toward understanding superconductivity and using it in such applications as power transmission.

New superconductivity mechanism found in iron compound

Ithaca, NY | Posted on January 8th, 2010

"Because these findings appear similar to what we have observed in the parent state of [copper-based] superconductors, it suggests this could represent a common factor in the mechanism for high-temperature superconductivity in these two otherwise very different families of materials," said team leader J.C. Sťamus Davis, Cornell's J.D. White Distinguished Professor of Physical Sciences and director of the U.S. Department of Energy's Center for Emergent Superconductivity. The researchers describe their findings in the Jan. 8 issue of the journal Science.

Many theorists had expected the iron-based materials to act more like conventional metal superconductors, where electrons pair up to carry current effortlessly but without requiring any specific spatial arrangements of the atoms in the metal. These materials conduct electricity with zero resistance only at temperatures near absolute zero, or -270 degrees Celsius (-454 Fahrenheit).

Cuprate, or copper-based, and newly discovered iron-based superconductors operate at a range of warmer, though still chilly, temperatures (up to -120 degrees Celsius or -184 Fahrenheit for cuprates and -220 degrees Celsius or -364 Fahrenheit for iron-based compounds) that make them potentially more practical for such large-scale, real-world applications as zero-loss power transmission lines.

Cuprates are oxides of copper "doped" with various other atoms. Iron-based superconductors -- first demonstrated only in 2008 -- are mostly doped compounds of iron and arsenic. Somehow the doping distorts the crystal structure of the material in a way that makes it possible for electrons to flow without resistance. Understanding how this works could open the door to engineering even higher-temperature, or ideally, room-temperature, versions.

The scientists used a specially built scanning tunneling microscope (STM) in Davis' lab at Cornell, in which a tiny probe is moved across a surface in steps smaller than the width of an atom. By varying a current flowing between the probe and the surface, Davis is able to read out a spectrum of the energy levels of electrons in the material and produce a picture of the distribution of the electrons. Davis was recently awarded the Kamerlingh-Onnes Prize for inventing this technique.

Davis and colleagues examined "underdoped" samples of a compound of calcium, iron, cobalt and arsenic that becomes a superconductor when the amount of cobalt doping is increased. The particular material they used, made by Paul Canfield at the U.S. Department of Energy's (DOE) Ames Laboratory in Iowa, was a crucial choice, Davis said, because it could be sliced to produce an atomically flat and perfectly debris-free surface needed for the STM techniques.

It became clear to the team that they were on to something very different than expected. They observed static, nanoscale lineups of electrons spanning about eight times the distance between individual iron atoms, all aligned along one axis of the underlying crystal, reminiscent of the way molecules line up in a liquid crystal.

Liquid crystals, used in electronic displays, are a sort of intermediate state between liquid and solid in which molecules line up in parallel rows that can control the passage of light. In the solid crystals of materials like high-temperature superconductors, electrons do not remain attached to individual atoms but behave like a fluid, and here, Davis said, the electrons seem to be in a state analogous to a liquid crystal. "You can't use ordinary solid-state physics to understand materials this complicated," he said.

The scientists also found that the electrons that are free to travel through the material do so in a direction perpendicular to these aligned electronic liquid crystal states. This indicates that the electrons carrying the current are distinct from those apparently aligned in the electronic liquid crystals.

The next step will be to see how these conditions affect the superconductivity of the material when it is transformed to a superconductor.

The observations are "amazingly similar" to what Davis and his team have seen in cuprates. "If we're able to relate our observations in the iron-based superconductors to what happens in cuprate superconductors, it may help us understand the overall mechanism for high-temperature superconductivity in all of these materials. That understanding could, in turn, help us to engineer new materials with improved superconducting properties for energy applications," Davis said.

Scientists from the National High Magnetic Field Laboratory at Florida State University and St. Andrews University, Scotland, collaborated on this research, funded by DOE's Office of Science; the National Science Foundation; the Office of Naval Research; the U.K. Engineering and Physical Sciences Research Council; and the Scottish Funding Council.

Images and supplementary materials on the research are available on Davis' Web site at people.ccmr.cornell.edu/~jcdavis/

####

About Cornell University
Once called "the first American university" by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

Today's Cornell reflects this heritage of egalitarian excellence. It is home to the nation's first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Discoveries

Research mimics brain cells to boost memory power September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Materials/Metamaterials

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Announcements

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Tools

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Oxford Instruments launches 3rd annual Indian nanotechnology seminars in Kolkata and Delhi - sharing expertise with Nanotechnology researchers in India September 25th, 2014

Energy

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Solar cell compound probed under pressure September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE