Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Optomec Awarded Air Force Contract to Enhance Fuel Cell Manufacturing System

Abstract:
Upgrades Target High Volume Production of Solid Oxide Fuel Cells

Optomec Awarded Air Force Contract to Enhance Fuel Cell Manufacturing System

Albuquerque, NM | Posted on January 6th, 2010

Optomec announced today that it has received a new contract from the Air Force Research Laboratory (AFRL) to deliver high throughput enhancements to its Aerosol Jet system. The upgrades will be made to a system that is being used by AFRL to develop and prototype high efficiency solid oxide fuel cells (SOFCs) based on Aerosol Jet's unique material mixing capabilities. These advances will significantly increase the output of the system and will demonstrate high volume production feasibility. The new contract brings the total amount of project funding to more than $1.5 million.

The AFRL system and its enhancements will remain housed at the Thermal and Electrochemical Branch-Propulsion Directorate Energy/Power/Thermal Division at the Wright-Patterson Air Force Base. The system will continue to be primarily used to develop deposition processes for SOFCs. Dr. Thomas L. Reitz, Chief of the Thermal and Electrochemical Branch states, "The Optomec system brings a unique capability to our lab in not only the area of solid oxide fuel cell development, but in thick film material deposition, in general, with a wide range of potential applications."

Optomec's systems offer both cost and functional benefits for the production of fuel cells. First of all, the Aerosol Jet process is a "digital" additive manufacturing approach that creates structures and patterns without the cost of screens, masks or other tooling. Plus, the process provides for high material utilization rates, which lowers the consumption of expensive catalysts and other materials. Additionally, the system has the unique capability to dynamically mix multiple materials during deposition, which allows the user to create smooth transitions between the material layers of a fuel cell as opposed to abrupt interfaces. This architecture creates a larger functional zone that results in higher efficiencies and increased power densities. In addition, it produces better mechanical stability at the interface compared with traditional approaches, which can result in delamination due to mismatches in the coefficients of thermal expansion between different materials. Finally, the Aerosol Jet system can also be used for deposition on non-planar supports for producing cylindrical-type SOFCs or ceramic membranes. For more information on Aerosol Jet systems, click here

Dave Ramahi, Optomec President/CEO states that "Optomec is proud to be working closely with the AFRL team, a recognized leader in the field of SOFC development. Their guidance has provided a critical understanding of the needs of this industry and we are confident that the high volume enhancements being developed under this contract will meet with strong demand from the fuel cell and other industries."

####

About Optomec
Optomec is the world-leading provider of additive manufacturing systems for high-performance applications in the Photovoltaic, Electronics, Biomedical, and Aerospace & Defense markets. These systems utilize Optomec’s proprietary Aerosol Jet and LENS powder-metal fabrication technology. The company has a global customer base of industry-leading manufacturers.

For more information, please click here

Contacts:
Corporate HQ
3911 Singer N.E.
Albuquerque, NM 87109
Phone: (505) 761-8250

Copyright © Optomec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Products

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

STMicroelectronics’ Semiconductor Chips Contribute to Connected Toothbrush from Oral-B That Sees What You Don’t: Microcontroller and Accelerometer help brushers clean their teeth more effectively October 4th, 2016

Particle Works launches range of high quality magnetic nanoparticles August 31st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Announcements

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Military

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Fuel Cells

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

New-Contracts/Sales/Customers

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Cetim Facility Receives Bruker Contour CMM Dimensional Analysis System: New Optical Coordinate Measurement Technology Enables High-Precision 3D Scanning November 16th, 2016

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project