Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Quantum age edges closer

A colour-enhanced Scanning Electron Microscope image of a quantum dot
A colour-enhanced Scanning Electron Microscope image of a quantum dot

Abstract:
Superfast quantum computing is closer than ever following recent breakthroughs by an international team led by researchers from the University of New South Wales.

Quantum age edges closer

New South Wales | Posted on January 5th, 2010

Quantum computing relies on controlling and observing the behaviour of quantum particles - for instance individual electrons - to deliver enormous processing power.

In the two breakthroughs, written up in the international journals Nano Letters and Applied Physics Letters, researchers have for the first time demonstrated two ways to deliberately place an electron in a nano-sized device on a silicon chip.

The achievements set the stage for the next crucial steps of being able to observe and then control the electron's quantum state or "spin", to create a quantum bit.

Multiple quantum bits coupled together make up the processor of a quantum computer.

Professor Andrew Dzurak, the NSW Node Director of the Australian National Fabrication Facility at UNSW and Dr Andrea Morello, Manager of the Quantum Measurement and Control Chip Program at the ARC Centre of Excellence for Quantum Computer Technology, were leaders in the breakthrough work.

In research just published in Applied Physics Letters, the team, including PhD student Wee Han Lim, were able to accurately localise a single electron in silicon without it being attached to an atom. This "artificial atom" is known as a "quantum dot".

Dr Morello said the quantum dot avoided the difficulty of having to introduce single atoms in precise positions in a silicon chip.

In a separate project, published in the journal Nano Letters, the researchers, including PhD student Kuan Yen Tan, used "nature's own way" to localise electrons, by binding them to single atoms.

Quantum computing's power comes from the fact that electrons can have a "spin" pointing in one of two directions. The spin position can be used in the same way that zeroes and ones represent data in today's computers.

However electrons can also hold intermediate spin positions, or quantum states, which is what gives quantum computing its power.

While today's computers increase their power linearly with the number of bits added, quantum bits, when coupled together, can deliver an exponential increase in their ability to represent data.

The other leaders of the research team are Professor David Jamieson at the University of Melbourne, and Dr Mikko Möttönen at the Helsinki University of Technology. Students Wee Han Lim and Kuan Yen Tan have just completed their PhD degrees in the UNSW School of Electrical Engineering and Telecommunications.

####

About University of New South Wales
Established in 1949, UNSW has expanded rapidly and now has close to 40,000 students, including more than 7000 international students from over 130 different countries. The University offers more than 300 undergraduate and 600 postgraduate programs, and has developed an extensive network of alumni chapters throughout Asia.

For more information, please click here

Contacts:
Media Contact:
Professor Andrew Dzurak
02 9385 6311


Dr Andrea Morello
02 9385 4972


UNSW Media Office:
Peter Trute
02 9385 1933

Copyright © University of New South Wales

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Quantum Computing

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Australian teams set new records for silicon quantum computing October 12th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Discoveries

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Quantum Dots/Rods

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

Quantum nanoscience

NIST quantum probe enhances electric field measurements October 8th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE