Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > State-of-the-art probe will lead to better solar cells

Professor Venkateswara Bommisetty
Professor Venkateswara Bommisetty

Abstract:
Federal research dollars will help South Dakota State University scientists build a first-of-its-kind microscope that could ultimately help scientists at SDSU and elsewhere develop better solar cells for converting sunlight to electricity.

State-of-the-art probe will lead to better solar cells

Brookings, SD | Posted on December 31st, 2009

Professor Venkateswara Bommisetty in SDSU's Department of Electrical Engineering & Computer Science will build a new photoactivated scanning probe microscopy tool that makes significant improvements on the existing scanning probe microscope.

"It will simultaneously measure efficiency-limiting factors by identifying defects, their structure and locations in a wide variety of solar cells, that existing microscopes are not able to do," Bommisetty said. "This instrument will also probe the light-energy conversion mechanisms in other optoelectronic devices such as light-emitting diodes."

The new equipment will be developed by an SDSU team under Bommisetty's leadership. Bommisetty received $456,000 for development of the scanning probe microscopy tool so that he and his colleagues can study photoactivated processes — processes activated by light — at the nanoscale. The grant is from the National Science Foundation. SDSU and its Department of Electrical Engineering and Computer Science are supplying an additional $200,000 to make a total project of about $650,000.

Bommisetty's career as a researcher has focused in part on developing better technologies to make such measurements at the nanoscale level.

"It is extremely important. It is a very hot area of research," Bommisetty noted. "Researchers elsewhere are facing the same problem. Application of these new technologies for the first time is important to help SDSU make its mark in developing new solar cell technologies."

The grant will create two new jobs in Brookings as Bommisetty hires a postdoctoral researcher and a graduate student to build the microscopy tool under his direction, acquiring valuable skills in the process. The grant will also help acquire high-tech components such as various types of laser generators and scanners necessary to build the scanning probe microscope.

There are three types of solar cells, Bommisetty noted: Inorganic solar cells based on materials such as silicon; organic solar cells that use carbon-based polymers; and hybrid solar cells that combine different technologies.

"The faculty members at SDSU are working on all three types of solar cells. In each of the respective solar cells, the challenges are different," Bommisetty said. "We know that all these technologies can be far more efficient than what they are today. The problem is, we don't know what factors are limiting the efficiencies of these solar cells. This microscope is specifically designed to identify defects that limit solar cell efficiency."

Developing such a microscope has been the goal of solar cell researchers for a long time. Importantly, the scanning probe microscopy tool is designed to measure different variables at the same time — a key advance in such technology.

"Simultaneous is a key word for our work, because if we measure one variable at a time, we won't know if we are modifying other variables during measurement or not," Bommisetty said. "If we measure them all at the same time, we can determine the exact problem and can effectively develop methods to address the problem."

Bommisetty said SDSU already is acquiring components and researchers will begin assembling the new scanning probe microscopy tool in 2010. One version of the microscope will go into the molecular electronics bay of a new SDSU cleanroom, planned for construction in 2010, so that scientists can use it to test new solar cells.

####

About South Dakota State University
South Dakota State University is the state’s largest university—and if you ask us, its best. With South Dakota’s most comprehensive range of academic offerings, there’s no better place to explore everything from aerospace to zoology.

For more information, please click here

Copyright © South Dakota State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Yale researchers’ technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Jobs

SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

SUNY Poly CNSE Announces Milestone as M+W Group Opens U.S. Headquarters at Albany Nanotech Complex and Research Alliance Begins $105M Solar Power Initiative October 20th, 2015

Global Engineering Firm DPS to Establish U.S. Advanced Technology Group Headquarters at SUNY Poly CNSE and Create 56 New Jobs Under STARTUP-NY Initiative October 6th, 2015

SUNY Poly Announces Joint Development Agreement with INFICON to Establish Cutting Edge R&D Partnership Supporting New York State’s Rapidly Expanding Nanoelectronics Industry September 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Announcements

Yale researchers’ technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Tools

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Solar/Photovoltaic

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

New generation of high-efficiency solar thermal absorbers developed June 20th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic