Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > State-of-the-art probe will lead to better solar cells

Professor Venkateswara Bommisetty
Professor Venkateswara Bommisetty

Abstract:
Federal research dollars will help South Dakota State University scientists build a first-of-its-kind microscope that could ultimately help scientists at SDSU and elsewhere develop better solar cells for converting sunlight to electricity.

State-of-the-art probe will lead to better solar cells

Brookings, SD | Posted on December 31st, 2009

Professor Venkateswara Bommisetty in SDSU's Department of Electrical Engineering & Computer Science will build a new photoactivated scanning probe microscopy tool that makes significant improvements on the existing scanning probe microscope.

"It will simultaneously measure efficiency-limiting factors by identifying defects, their structure and locations in a wide variety of solar cells, that existing microscopes are not able to do," Bommisetty said. "This instrument will also probe the light-energy conversion mechanisms in other optoelectronic devices such as light-emitting diodes."

The new equipment will be developed by an SDSU team under Bommisetty's leadership. Bommisetty received $456,000 for development of the scanning probe microscopy tool so that he and his colleagues can study photoactivated processes — processes activated by light — at the nanoscale. The grant is from the National Science Foundation. SDSU and its Department of Electrical Engineering and Computer Science are supplying an additional $200,000 to make a total project of about $650,000.

Bommisetty's career as a researcher has focused in part on developing better technologies to make such measurements at the nanoscale level.

"It is extremely important. It is a very hot area of research," Bommisetty noted. "Researchers elsewhere are facing the same problem. Application of these new technologies for the first time is important to help SDSU make its mark in developing new solar cell technologies."

The grant will create two new jobs in Brookings as Bommisetty hires a postdoctoral researcher and a graduate student to build the microscopy tool under his direction, acquiring valuable skills in the process. The grant will also help acquire high-tech components such as various types of laser generators and scanners necessary to build the scanning probe microscope.

There are three types of solar cells, Bommisetty noted: Inorganic solar cells based on materials such as silicon; organic solar cells that use carbon-based polymers; and hybrid solar cells that combine different technologies.

"The faculty members at SDSU are working on all three types of solar cells. In each of the respective solar cells, the challenges are different," Bommisetty said. "We know that all these technologies can be far more efficient than what they are today. The problem is, we don't know what factors are limiting the efficiencies of these solar cells. This microscope is specifically designed to identify defects that limit solar cell efficiency."

Developing such a microscope has been the goal of solar cell researchers for a long time. Importantly, the scanning probe microscopy tool is designed to measure different variables at the same time — a key advance in such technology.

"Simultaneous is a key word for our work, because if we measure one variable at a time, we won't know if we are modifying other variables during measurement or not," Bommisetty said. "If we measure them all at the same time, we can determine the exact problem and can effectively develop methods to address the problem."

Bommisetty said SDSU already is acquiring components and researchers will begin assembling the new scanning probe microscopy tool in 2010. One version of the microscope will go into the molecular electronics bay of a new SDSU cleanroom, planned for construction in 2010, so that scientists can use it to test new solar cells.

####

About South Dakota State University
South Dakota State University is the state’s largest university—and if you ask us, its best. With South Dakota’s most comprehensive range of academic offerings, there’s no better place to explore everything from aerospace to zoology.

For more information, please click here

Copyright © South Dakota State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Jobs

SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

SUNY Poly CNSE Announces Milestone as M+W Group Opens U.S. Headquarters at Albany Nanotech Complex and Research Alliance Begins $105M Solar Power Initiative October 20th, 2015

Global Engineering Firm DPS to Establish U.S. Advanced Technology Group Headquarters at SUNY Poly CNSE and Create 56 New Jobs Under STARTUP-NY Initiative October 6th, 2015

SUNY Poly Announces Joint Development Agreement with INFICON to Establish Cutting Edge R&D Partnership Supporting New York State’s Rapidly Expanding Nanoelectronics Industry September 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Tools

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Cornell researchers create first self-assembled superconductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

LC.300 Series Nanopositioning Controller from nPoint January 28th, 2016

Solar/Photovoltaic

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Nanostructural Changes in Solar Cells to Increase Their Efficiency January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic