Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Spintronics could mean big energy savings

Abstract:
A research team has made a breakthrough in nanotechnology by discovering how to transfer magnetic information directly into a semiconductor. The new technique works by the generation and polarisation of spin control in a silicon-based device that works at room temperature - the first time this has been achieved. The results of the study are published in the journal Nature.

Spintronics could mean big energy savings

Netherlands | Posted on November 27th, 2009

As opposed to traditional electronics, which uses the charge of the electron, spintronics uses the electron's 'spin' and manipulates the spin orientation. An electron's sense of rotation is represented by a spin that either points up or down. In magnetic material the spin orientation of the electron can be used to store information. The challenge for nanotechnology is the transfer of this spin information to a semiconductor, so that the information stored can be processed in spin-based electronic components.

The use of spintronics technology could revolutionise the electronics and computing industries by making it possible to store vast amounts of data in much smaller devices than is currently possible.

The development of a silicon-based device that works at room temperature is a breakthrough for two reasons: first, silicon is the prevalent material in modern electronics production; and second, until now scientists have only been able to demonstrate control of electron spin at low temperatures that are not practical for everyday use.

The demonstration of information exchange between a magnetic material and a semiconductor at room temperature is a positive step in the development of spintronics technology. If the new technology takes off it would mean huge energy savings because reversing the 'electronic spin' would require less power than the normal electronic charge.

To achieve the information exchange, the research team inserted a one-nanometre thick layer of aluminium oxide between the magnetic material and the semiconductor. The information is then transferred by applying an electric current across the oxide interface which introduces a magnetisation in the semiconductor. Importantly, this method works well with silicon.

The team found that the spin information propagated into the silicon to a depth of several hundred nanometres which is sufficient for the operation of nanoscale spintronic components.

The research team, which was led by Dr Ron Jansen from the MESA+ Institute for Nanotechnology at the University of Twente and included the Foundation for Fundamental Research on Matter (FOM), both in the Netherlands, believes that the new findings make the timely development of 'spintronics' technology much more likely and may help to integrate silicon spin technologies with current electronics technology.

Funding for the project came from the FOM Foundation and the Netherlands Organisation for Scientific Research.

For more information, please visit:

Nature: www.nature.com/

MESA+ Institute for Nanotechnology, University of Twente: www.mesaplus.utwente.nl/

FOM Foundation: www.fom.nl/live/english/home.pag

####

About CORDIS
CORDIS, the Community Research and Development Information Service, is a free service provided by the Office for Official Publications of the European Communities.

It is dedicated to promoting participation in the EU research programmes and to facilitating the uptake of European research results by industry. The service contributes to achieve the strategic goal of the European Union to become the most competitive knowledge based economy in the world by 2010.

For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

MESA+ Institute for Nanotechnology

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Possible Futures

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Spintronics

CWRU physicists deploy magnetic vortex to control electron spin: Potential technology for quantum computing, keener sensors June 21st, 2016

Spintronics: Resetting the future of heat assisted magnetic recording June 15th, 2016

Spintronics development gets boost with new findings into ferromagnetism in Mn-doped GaAs June 7th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Chip Technology

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Nanometrics to Participate in the 8th Annual CEO Investor Summit: Investor Event Held Concurrently with SEMICON West 2016 in San Francisco June 22nd, 2016

Memory Technology

Ensuring the future affordability of wind turbines, computers and electric cars June 2nd, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic