Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano-towers fire off single photons

Abstract:
Würzburg physicists are global leaders in the creation of sophisticated nanostructures. The fruits of their research could make tap-proof data transmission a possibility in the future.

Nano-towers fire off single photons

Würzburg | Posted on November 26th, 2009

At the heart of the concept are tiny towers, made from semiconducting material, at the University of Würzburg's Department of Applied Physics. They are around ten micrometers in height, with a diameter of just one to two micrometers (a human hair is roughly a hundred times thicker).

Contained inside the towers are special structures capable of emitting light: these are known as quantum dots, and their electronic and optical properties can be customized during production. Quantum dots, in the same way as single atoms, possess precisely defined energy states. This enables them to send out photons (light particles) with an exact amount of energy.

Single photons can be generated

What is special about the Würzburg quantum dot towers is that "with them it is possible to 'fire off' single photons in a targeted fashion. It is structural elements like these that are needed for the tap-proof transmission of data in the field of quantum cryptography," explains Würzburg physicist Stephan Reitzenstein.

However, to date, the production of single photons in these structures has only been achieved with temperatures well below minus 100 degrees Celsius. So, there are still hurdles to overcome before the concept can be routinely applied.

Publication in Nature Photonics

Thanks to the tiny towers developed in Würzburg, there are now new insights into quantum dots. Physicists on Professor Peter Michler's team (Institute of Semiconductor Optics and Functional Interfaces of the University of Stuttgart) have published these jointly with their Würzburg colleagues in the journal Nature Photonics.

Those involved in the publication from Würzburg's Department of Applied Physics were Stephan Reitzenstein, Andreas Löffler, Sven Höfling, and Professor Alfred Forchel. The Stuttgart team included Serkan Ates, Sven M. Ulrich, Ata Ulhaq, and Professor Peter Michler.

New tool for analyzing quantum dots

The Stuttgart physicists studied the Würzburg nano-towers as part of a venture sponsored by the German Research Foundation (DFG). "The towers serve as a new tool for analyzing the properties of quantum dots in a way never seen before," explains Reitzenstein.

The Stuttgart team discovered an unexpected effect, known as non-resonant coupling. This suggests strong light-matter interactions in such solid-state systems. According to Peter Michler, "this will have major repercussions on the design and functionality of future quantum emitters that are based on quantum dots."

Structure of the Würzburg towers

The new insights were made possible by the special structure and highly optimized production of the towers. The quality of the towers realized at the University of Würzburg is outstanding by global comparison.

The tiny structures consist of a sophisticated sequence of layers made from the semiconductors aluminum arsenide and gallium arsenide. "Their special structure makes them into high-quality optical resonators, which confine single photons on a light wavelength scale in all three spatial dimensions," says Stephan Reitzenstein.

Embedded in the center of the towers are some 100 quantum dots made from the semiconducting material indium gallium arsenide. Reitzenstein: "Using special spectroscopic procedures, however, a single quantum dot can purposefully be brought into resonance with the optical mode of a tower in order to conduct fundamental physics experiments on the interaction between light and matter."

Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy, S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Hoöfling, A. Forchel, and P. Michler, Nature Photonics, published online on Nov. 22, 2009, doi:10.1038/nphoton.2009.215

####

About University of Würzburg
The roots of Julius-Maximilians University at Würzburg reach back as far as 1402 AD. In that era, it was the sixth institution of higher learning to be founded in the German-speaking regions of Europe, after the Universities of Prague, Vienna, Heidelberg, Cologne, and Erfurt.

For more information, please click here

Contacts:
Dr. Stephan Reitzenstein
University of Würzburg
phone +49 931 31-85116

Dr. Sven M. Ulrich
University of Stuttgart
phone +49 711 685-65226

Copyright © University of Würzburg

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Physics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

Possible Futures

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Scientists create laser-activated superconductor February 8th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

A fast solidification process makes material crackle February 8th, 2016

Announcements

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Tools

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Homeland Security

Detecting and identifying explosives with single test December 10th, 2015

Columbia engineers build biologically powered chip: System combines biological ion channels with solid-state transistors to create a new kind of electronics December 7th, 2015

Nanoparticle delivery maximizes drug defense against bioterrorism agent: UCLA team develops method for improving drug’s efficacy while reducing side effects November 6th, 2015

Toward clearer, cheaper imaging of ultrafast phenomena: A new, all-optical method for compressing narrow electron pulses to a billionth of a billionth of a second could improve real-time movies of chemical reactions and other ultrafast processes October 14th, 2015

Military

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Quantum Dots/Rods

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

QD Vision Named to the 2015 Global Cleantech 100 Under the Radar List: Quantum Dot Leader Recognized for Clean Technology Innovation January 26th, 2016

Light-activated nanoparticles prove effective against antibiotic-resistant 'superbugs' January 19th, 2016

Quantum nanoscience

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic