Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano-towers fire off single photons

Abstract:
Würzburg physicists are global leaders in the creation of sophisticated nanostructures. The fruits of their research could make tap-proof data transmission a possibility in the future.

Nano-towers fire off single photons

Würzburg | Posted on November 26th, 2009

At the heart of the concept are tiny towers, made from semiconducting material, at the University of Würzburg's Department of Applied Physics. They are around ten micrometers in height, with a diameter of just one to two micrometers (a human hair is roughly a hundred times thicker).

Contained inside the towers are special structures capable of emitting light: these are known as quantum dots, and their electronic and optical properties can be customized during production. Quantum dots, in the same way as single atoms, possess precisely defined energy states. This enables them to send out photons (light particles) with an exact amount of energy.

Single photons can be generated

What is special about the Würzburg quantum dot towers is that "with them it is possible to 'fire off' single photons in a targeted fashion. It is structural elements like these that are needed for the tap-proof transmission of data in the field of quantum cryptography," explains Würzburg physicist Stephan Reitzenstein.

However, to date, the production of single photons in these structures has only been achieved with temperatures well below minus 100 degrees Celsius. So, there are still hurdles to overcome before the concept can be routinely applied.

Publication in Nature Photonics

Thanks to the tiny towers developed in Würzburg, there are now new insights into quantum dots. Physicists on Professor Peter Michler's team (Institute of Semiconductor Optics and Functional Interfaces of the University of Stuttgart) have published these jointly with their Würzburg colleagues in the journal Nature Photonics.

Those involved in the publication from Würzburg's Department of Applied Physics were Stephan Reitzenstein, Andreas Löffler, Sven Höfling, and Professor Alfred Forchel. The Stuttgart team included Serkan Ates, Sven M. Ulrich, Ata Ulhaq, and Professor Peter Michler.

New tool for analyzing quantum dots

The Stuttgart physicists studied the Würzburg nano-towers as part of a venture sponsored by the German Research Foundation (DFG). "The towers serve as a new tool for analyzing the properties of quantum dots in a way never seen before," explains Reitzenstein.

The Stuttgart team discovered an unexpected effect, known as non-resonant coupling. This suggests strong light-matter interactions in such solid-state systems. According to Peter Michler, "this will have major repercussions on the design and functionality of future quantum emitters that are based on quantum dots."

Structure of the Würzburg towers

The new insights were made possible by the special structure and highly optimized production of the towers. The quality of the towers realized at the University of Würzburg is outstanding by global comparison.

The tiny structures consist of a sophisticated sequence of layers made from the semiconductors aluminum arsenide and gallium arsenide. "Their special structure makes them into high-quality optical resonators, which confine single photons on a light wavelength scale in all three spatial dimensions," says Stephan Reitzenstein.

Embedded in the center of the towers are some 100 quantum dots made from the semiconducting material indium gallium arsenide. Reitzenstein: "Using special spectroscopic procedures, however, a single quantum dot can purposefully be brought into resonance with the optical mode of a tower in order to conduct fundamental physics experiments on the interaction between light and matter."

Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy, S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Hoöfling, A. Forchel, and P. Michler, Nature Photonics, published online on Nov. 22, 2009, doi:10.1038/nphoton.2009.215

####

About University of Würzburg
The roots of Julius-Maximilians University at Würzburg reach back as far as 1402 AD. In that era, it was the sixth institution of higher learning to be founded in the German-speaking regions of Europe, after the Universities of Prague, Vienna, Heidelberg, Cologne, and Erfurt.

For more information, please click here

Contacts:
Dr. Stephan Reitzenstein
University of Würzburg
phone +49 931 31-85116

Dr. Sven M. Ulrich
University of Stuttgart
phone +49 711 685-65226

Copyright © University of Würzburg

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Physics

Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter September 23rd, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Tools

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Homeland Security

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Military

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Quantum Dots/Rods

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

Nano-pea pod model widens electronics applications: A new theoretical model explains how a nanostructure, such as the nano-pea pod, can exhibit localised electrons September 4th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Quantum nanoscience

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE