Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Selling chip makers on optical computing

In the prototype optical chip shown here, the circles in the top two rows are "ring resonators" that can filter out light of different wavelengths. 
Image courtesy of Vladimir Stojanovic
In the prototype optical chip shown here, the circles in the top two rows are "ring resonators" that can filter out light of different wavelengths. Image courtesy of Vladimir Stojanovic

Abstract:
By designing chips that can be built using existing fabrication processes, MIT researchers show that computing with light isn't so far fetched.

Selling chip makers on optical computing

Cambridge, MA | Posted on November 24th, 2009

Larry Hardesty, MIT News Office: Computer chips that transmit data with light instead of electricity consume much less power than conventional chips, but so far, they've remained laboratory curiosities. Professors Vladimir Stojanović and Rajeev Ram and their colleagues in MIT's Research Laboratory of Electronics and Microsystems Technology Laboratory hope to change that, by designing optical chips that can be built using ordinary chip-manufacturing processes.

"I don't see anyone else that's doing that," says Michael Watts, a researcher at Sandia National Laboratories who's also working on optical chips. "If they're successful at that, then convincing a major processor or memory manufacturer that this is a viable approach will be much, much easier."

Granted access to the same manufacturing facilities that Texas Instruments uses to produce cell phone chips and microprocessors, the MIT researchers have demonstrated that they can put large numbers of working optical components and electronics on the same chip. But so far, the electronics haven't been able to control the optics directly. That's something that Stojanović hopes to show with a new batch of chips due back from TI and another major semiconductor manufacturer this winter.

Optical data transmission could solve what will soon be a pressing problem in chip design. As chips' computational capacity increases, they need higher-bandwidth connections to send data to memory; otherwise, their added processing power is wasted. But sending more data over an electrical connection requires more power.

Smaller transistors are more energy-efficient than larger ones, so over time, chips' total power consumption has changed little. But "the fraction of power that's used for communications has grown," Watts says. "At some point, you have to devote all your power to communications. And that point's not too far off. And then what's left for computation? Nothing." Future chips could simply draw more power, but then they would also be harder to cool, and the battery life of laptops and handheld devices would dramatically shorten.

So chip companies would welcome a more energy-efficient way to move data around — if they were confident that it was cost-effective. And that's why demonstrating compatibility with existing manufacturing processes would be so persuasive.

Manufacturers build chips by sequentially depositing layers of different materials — like silicon, silicon dioxide, and copper — on a wafer of silicon, and then etching the layers away to build three-dimensional structures. The problem with using existing processes to build optical components is that the deposition layers are thinner than would be ideal. "You would want a normal photonic device to be a little bit taller and thinner so that you can minimize the surface-roughness losses," Stojanović says. "Here you don't have that choice because the film thicknesses are set by fabrication."

Optical chips use structures called waveguides to direct light, and researchers trying to add optical components to a silicon chip usually carve the waveguides out of a single crystal of silicon, Stojanović says. But waveguides made from single-crystal silicon require insulating layers above and below them, which standard chip-manufacturing processes like TI's and Intel's provide no way to deposit. They do, however, provide a way to deposit insulators above and below layers of polysilicon, which consists of tiny, distinct crystals of silicon clumped together and is typically used in the part of a transistor called the gate. So the MIT researchers built their waveguides from polysilicon instead.

So far, TI has produced two sets of prototypes for the MIT researchers, one using a process that can etch chip features as small as 65 nanometers, the other using a 32-nanometer process. To keep light from leaking out of the polysilicon waveguides, the researchers hollowed out the spaces under them when they got the chips back — the sole manufacturing step that wasn't possible using TI's in-house processes. But "that can probably be fixed more elegantly in the fabrication house if they see that by fixing that, we get all these benefits," Watts says. "That's a pretty minor modification, I think."

The MIT researchers' design uses light provided by an off-chip laser. But in addition to guiding the beam, the chip has to be able to load information onto it and pull information off of it. Both procedures use ring resonators, tiny rings of silicon carved into the chip that pull light of a particular frequency out of the waveguide. Rapidly activating and deactivating the resonators effectively turns the light signal on and off, and bursts of light and the gaps between them can represent the ones and zeroes of digital information.

To meet the bandwidth demands of next-generation chips, however, the waveguides will have to carry 128 different wavelengths of light, each encoded with its own data. So at the receiving end, the ring resonators provide a bank of filters to disentangle the incoming signals. On the prototype chips, the performance of the filter banks was "the most amazing result to us," Stojanović says, "which kind of said that, okay, there's still hope, and we should keep doing this." The wavelength of light that the resonators filter is determined by the size of their rings, and no one — at either TI or MIT — could be sure that conventional manufacturing processes were precise enough to handle such tiny variations.

Stojanović hopes that the next batch of prototypes, which should give the chips' electronics control over the optical components, will demonstrate that the resonators perform as well when loading data onto light beams. At the same time, the team is looking to extend its approach to memory chips. "The memory's a much tougher nut to crack, because it is such a cost-driven business, where every process step matters," Stojanović says. "Things are a lot harder to change there, and optics really needs to be absolutely compatible with process flow." But if memory chips as well as processors sent data optically, Stojanović says, then in addition to saving power, they could make computers much faster. "If you just focus on the processor itself, you maybe get a 4x advantage with photonics," Stojanović says. "But if you focus on the whole connectivity problem, we're talking 10, 20x improvements in system performance."

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

The Institute is committed to generating, disseminating, and preserving knowledge, and to working with others to bring this knowledge to bear on the world's great challenges. MIT is dedicated to providing its students with an education that combines rigorous academic study and the excitement of discovery with the support and intellectual stimulation of a diverse campus community. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

For more information, please click here

Contacts:
Tel 617.253.2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyčres' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Chip Technology

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Optical computing/ Photonic computing

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

Electrons corralled using new quantum tool: 'Whispering gallery' effect confines electrons, could provide basis for new electron-optics devices May 7th, 2015

Putting a new spin on plasmonics: Researchers at Aalto University have discovered a novel way of combining plasmonic and magneto-optical effects May 7th, 2015

Nanoelectronics

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

Announcements

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project