Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Detecting the Undetectable in Prostate Cancer Testing

Abstract:
A team of Northwestern University researchers, using an extremely sensitive nanotechnology-based tool known as the biobarcode system, has detected previously undetectable levels of prostate-specific antigen (PSA) in patients who have undergone radical prostatectomy. This new assay, just one of many being developed by investigators at the Nanomaterials for Cancer Diagnostics and Therapeutics Center for Cancer Nanotechnology Excellence (Northwestern CCNE), is 300 times more sensitive than commercially available PSA tests.

Detecting the Undetectable in Prostate Cancer Testing

Bethesda, MD | Posted on November 18th, 2009

The ability to easily and quickly detect very low levels of PSA may enable doctors to diagnose men with prostate cancer recurrence years earlier than is currently possible. Prostate cancer is the second leading cause of cancer death for men in the United States. (Only lung cancer is more deadly.) "We have defined a new zero for PSA," said Chad Mirkin, Ph.D., principal investigator of the Northwestern CCNE. "This level of sensitivity in detecting low concentrations of PSA will take the blinders off the medical community, especially when it comes to tracking residual disease." This study, which was led by Mirkin and C. Shad Thaxton, M.D., appears in the Proceedings of the National Academy of Sciences (PNAS).

"This new PSA assay may alter the management of patients who have been treated with surgery for prostate cancer," said William J. Catalona, M.D., director of the Clinical Prostate Cancer Program at Northwestern's Lurie Cancer Center. He was the first to demonstrate that the PSA test, a simple blood test, could be used as a screening tool for prostate cancer. "Studies have shown that postoperative radiation therapy given early to patients with adverse pathology, called adjuvant radiation, reduces the recurrence rate and improves survival," Catalona said. After the removal of the prostate gland, patients typically have PSA levels that are undetectable when measured using conventional diagnostic tools. "Because the 'nano-PSA assay' is more sensitive than the current commercially available PSA tests, it may allow physicians to target adjuvant radiation for patients destined to have a life-threatening tumor recurrence."

The study is an early indicator of how nanotechnology can be used to improve medical diagnostics and early cancer detection. In the case of prostate cancer recurrence following primary surgical treatment, patients with detectable but non-rising PSA levels could be reassured that their cancer will not recur. This reassurance potentially could be delivered much earlier than with conventional diagnostic tools. For patients with increasing levels of PSA, detected before conventional tools are able, doctors could diagnose a recurrence and intervene accordingly.

Furthermore, the effectiveness of post-operative treatment could be assessed by monitoring a patient's PSA levels. Tracking PSA levels early, before conventional tools are able, may allow doctors to validate treatments for recurrent cancer, such as radiation, hormone therapies and chemotherapies. The most effective will be able to keep down PSA levels.

"The first route to a new therapeutic is a good diagnostic tool, and that's what we have here," said Mirkin. "This bio-barcode assay, or a variant of it, could be a commercial tool in as little as 18 months. The technology is there. Now it's a business decision."

PSA is a protein produced by the cells of the prostate gland and found in the bloodstream. This pilot study looked at serum samples from 18 post-prostatectomy patients collected over the course of a number of years.

The researchers were able to reliably and accurately quantify PSA values at less than 0.1 nanograms per milliliter, the clinical limit of detection for commercial assays. The lower limit of detection for PSA using the bio-barcode assay is approximately 300 times lower than the lower limit of detection for commercial tests. The PSA measurements were used to classify the patients as either having no evidence of disease or having a relapse of disease. The Northwestern team is now conducting a similar retrospective study of 260 patients and eventually plans to do a large prospective study.

The ultra-sensitive technology is based on gold nanoparticle probes decorated with DNA and antibodies that can recognize and bind to PSA when present at extremely low levels in a blood sample. A magnetic microparticle, outfitted with a second antibody for PSA, also is used in the assay. When in solution, the antibody-functionalized particles "recognize" and bind to PSA, sandwiching the protein between the two particles.

The key is that attached to each tiny gold nanoparticle are hundreds of identical strands of DNA. Mirkin calls this "bar-code DNA" because they have designed it as a label specific to the PSA target. After the "particle-protein-particle" sandwich is removed magnetically from solution, the DNA is removed from the sandwich and read using a Verigene® ID system, a nanotechnology platform designed to detect and quantify DNA. The amount of PSA present is calculated based on the amount of bar-code DNA. For each molecule of captured PSA, hundreds of DNA strands are released, which is one of the ways the PSA signal is amplified.

This work, which is detailed in a paper titled, "Nanoparticle-based bio-barcode assay redefines 'undetectable' PSA and biochemical recurrence after radical prostatectomy," was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. Investigators from the Innsbruck Medical University in Austria also participated in this study. An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Nanomedicine

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Sensors

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Spiraling light, nanoparticles and insights into life’s structure November 19th, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Announcements

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE