Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Top EU grant goes to nanotechnology

Abstract:
The European Research Council (ERC) has awarded a prestigious EUR 2.5 million Advanced Grant to the Institute of Nanoscience at Delft University of Technology in the Netherlands (TU Delft) for its work in bio-nano research.

Top EU grant goes to nanotechnology

EU | Posted on November 17th, 2009

The ERC, funded under the 'Ideas' Theme of the Seventh Framework Programme (FP7), is the first EU funding body set up to support challenging new research and advance excellence in creative scientific thinking. It also seeks to encourage scientists to identify new opportunities and challenges rather than having their research led by governments and policy makers.

Nanotechnology is one of these frontier areas of research, and the recipient of the ERC Advanced Grant, Professor Cees Dekker from the Institute of Nanoscience at TU Delft, said, 'We want to use the power of nanofabrication [...] to find out more about big biological questions such as the precise working of processes within cells.'

In the first part of his research project, Professor Dekker and his team will study the evolution and adaptation of bacteria. 'Nanofabrication techniques allow us to build precisely defined landscapes on a chip, in order to study the adaptation and evolution of bacteria,' he explained.

'We are actually creating a kind of miniature Galapagos Islands for bacteria. Some of them will cross over to a different island; others won't. By varying the environmental factors and properties of the bacteria, we can gain more insight into how bacteria adapt. We can directly observe evolution in space and time.'

The bacteria in the study move through narrow channels where they are completely flattened before emerging in different shapes. The research being carried out by Professor Dekker and his team suggests that that there may be far more bacteria present in narrow spaces than previously thought. This may have critical consequences for products such as medical equipment.

In the second part of the research, the team will use electron bundles to make nanometre-wide holes. DNA molecules will be able to move through these holes while being tracked and screened. The aim is to read their genetic codes and observe which genes are either switched 'on' or 'off'.

In the final part of the research, the team will attempt to 'mimic' the construction of biological pores by focusing on the microscopic holes in the membrane of the cell nucleus. 'In those holes there are certain proteins which function as a kind of gatekeeper to the cell nucleus,' said Professor Dekker. 'They determine which molecules are allowed out or in. But exactly how they do that is still a mystery. By mimicking these holes with nanofabrication and coating them with these gatekeeper proteins, we hope to discover more about this important mechanism.'

For Professor Dekker, a particularly interesting element of the research is the element of chance. 'Some bacteria aim for cooperation while others are 'cheaters' which benefit from the work of their fellows,' he explained. 'We can manage those properties too, and study them under controlled circumstances.'

For more information, please visit:

Delft University of Technology (TU Delft): www.tudelft.nl/

European Research Council (ERC): erc.europa.eu/

####

About CORDIS
CORDIS, the Community Research and Development Information Service, is a free service provided by the Office for Official Publications of the European Communities.

It is dedicated to promoting participation in the EU research programmes and to facilitating the uptake of European research results by industry. The service contributes to achieve the strategic goal of the European Union to become the most competitive knowledge based economy in the world by 2010.

For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Possible Futures

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Chip Technology

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Nanometrics to Participate in the 8th Annual CEO Investor Summit: Investor Event Held Concurrently with SEMICON West 2016 in San Francisco June 22nd, 2016

Nanomedicine

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

New nanoparticle technology developed to treat aggressive thyroid cancer: Platform designed to deliver nanotherapy effective in preclinical models of metastatic anaplastic thyroid cancer June 21st, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Announcements

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Tools

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEIís QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

New nanoparticle technology developed to treat aggressive thyroid cancer: Platform designed to deliver nanotherapy effective in preclinical models of metastatic anaplastic thyroid cancer June 21st, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

Nanobiotechnology

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic