Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > LLNL Licenses Carbon Nanotube Technology To Local Company

Porifera’s Chief Technology Officer Olgica Bakajin helped create carbon nanotube technology while at the Laboratory.
Porifera’s Chief Technology Officer Olgica Bakajin helped create carbon nanotube technology while at the Laboratory.

Abstract:
Technology could be used for desalination

LLNL Licenses Carbon Nanotube Technology To Local Company

Livermore, CA | Posted on November 13th, 2009

Lawrence Livermore National Laboratory has exclusively licensed to Porifera Inc. of Hayward a carbon nanotube technology that can be used to desalinate water and can be applied to other liquid based separations.

Carbon nanotubes -- special molecules made of carbon atoms in a unique arrangement -allow liquids and gases to rapidly flow through, while the tiny pore size can block larger molecules, offering a cheaper way to remove salt from water.

"The technology is very exciting," said Olgica Bakajin, who serves as chief technology officer of Porifera. "It's at the right place to take it to the marketplace."

Bakajin formerly worked at LLNL where she was recruited in 2000 as a Lawrence Fellow and then moved on to become chief scientist on the carbon nanotube project along with LLNL chemist Aleksandr Noy, another former Lawrence Fellow. The license was awarded through LLNL's Industrial Partnership Office.

Porifera is developing membranes with vastly superior permeability, durability and selectivity for water purification and other applications in the clean tech sector such as CO_ sequestration. The technology is based on discoveries made at the National Nuclear Security Administration's Lawrence Livermore Lab.

The technology first took off when it was funded by Livermore's Laboratory Directed Research and Development Program and supported by the Science and Technology Principal Directorate. Bakajin and Noy's research originally focused on using carbon nanotubes as a less expensive solution to desalination. The technique was first demonstrated using a nanotube membrane on a silicon chip the size of a quarter.

Recently, the team made up of Bakajin and Noy as well as another LLNL scientist, Francesco Fornasiero, and Porifera scientists Sangil Kim and Jennifer Klare, thought about different applications for the nanotube membranes.

"Carbon sequestration has always been at the back of our minds, as unique properties of carbon nanotube membranes provide critical advantages for potential use in carbon sequestration applications," Noy said. Bakajin agreed the membranes would separate CO_ from nitrogen in power plant emissions. The membranes would transfer the two gases at a different rate so that the CO_ could be separated and sequestered. Sequestering CO_ is a key strategy to help curb global warming.

"We've known about the possibilities for this for quite some time," she said. "The reason it makes sense to do it is because of the unique nanofluidic properties of carbon nanotube pores. We believe that our approach will work and we're looking forward to working with the Lab on this."

Recently, the Laboratory, Porifera, and UC Berkeley received more than $1 million from the Department of Energy's Advanced Research Projects Agency to develop the carbon capture technique using the nanotubes.

ARPA-E's mission is to develop nimble, creative and inventive approaches to transform the global energy landscape, while advancing America's technology leadership. The grant is for two years.

"It's the first time that this kind of grant has been given," Bakajin said. "It's on us to show that it's really worth it. The agency's success is going to depend on how well we do. "

In conjunction with other partners, Porifera also secured $3.3 million from the Defense Advanced Research Projects Agency (DARPA) to develop a small, portable self-cleaning desalination system that could be used in the field.

"If we can really make this work it is a game-changing technology," Bakajin said. "The goal is to go for any waterŠit could take out contaminants. It's a real challenge, and the technology has great potential."

Porifera Inc. was founded in 2008 with the sole goal of commercializing carbon nanotube membrane technology. The R&D team includes the technology's original inventors.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory (www.llnl.gov) is a national security laboratory that develops science and engineering technology and provides innovative solutions to our nation's most important challenges. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

GTC Shanghai Highlights GF’s Momentum in China: Company shares details of technology roadmap and customer adoption in the world’s fastest-growing market for semiconductors October 23rd, 2017

Nanobiotix completes patient inclusion for Phase II/III trial of NBTXR3 in soft tissue sarcoma October 23rd, 2017

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) October 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nanobiotix completes patient inclusion for Phase II/III trial of NBTXR3 in soft tissue sarcoma October 23rd, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Possible Futures

GTC Shanghai Highlights GF’s Momentum in China: Company shares details of technology roadmap and customer adoption in the world’s fastest-growing market for semiconductors October 23rd, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Announcements

Nanobiotix completes patient inclusion for Phase II/III trial of NBTXR3 in soft tissue sarcoma October 23rd, 2017

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) October 23rd, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Patents/IP/Tech Transfer/Licensing

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Nanoparticles limit damage in spinal cord injury: Injection after an injury reduces inflammation and scarring September 6th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Environment

Single ‘solitons’ promising for optical technologies October 9th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell August 28th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Water

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Bacteria-coated nanofiber electrodes clean pollutants in wastewater July 1st, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Plasmonics could bring sustainable society, desalination tech June 2nd, 2017

Alliances/Trade associations/Partnerships/Distributorships

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

GLOBALFOUNDRIES and Soitec Enter Into Long-term Supply Agreement on FD-SOI Wafers: Strategic milestone to help guarantee a secure, high-volume supply of FD-SOI technology September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project