Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Studying the force: Turner earns CAREER award for research on micro-devices

Kevin T. Turner
Kevin T. Turner

Abstract:
Imagine reading this article on an electronic screen that could be rolled up and put into a pocket. Someday, the electronics to power this kind of screen may be produced by a process that relies on a very simple tool: a stamp.

Studying the force: Turner earns CAREER award for research on micro-devices

Madison, WI | Posted on November 13th, 2009

Reliable flexible displays are only one of a variety of new microelectronic and micromechanical devices that may become possible thanks to fundamental research by Mechanical Engineering Assistant Professor Kevin Turner. Turner is studying the underlying physics and mechanics of adhesion during a process called microtransfer printing. He will use his research to improve microtransfer printing manufacturing processes, which eventually could be used to produce a host of innovative technologies, such as advanced optoelectronic devices, high efficiency solar cells, and new types of microelectromechanical systems.

His work has garnered a prestigious National Science Foundation CAREER award, which recognizes faculty members at the beginning of their academic careers who have developed creative projects that effectively integrate advanced research and education. Turner's award comes with a five-year $430,000 grant.

Microtransfer printing is essentially a process that "prints" with solid materials rather than ink. A silicone stamp is designed with a smooth side that is used to pick up micro- or nanostructures from the substrate on which they are originally fabricated. The stamp is used to transfer these structures — which may be fully processed integrated circuits or building blocks for more complex devices — and places them down on another substrate or functional device.

Traditional silicon-based microelectronic devices are constructed on thick wafers, which produce rigid devices. To create a flexible device, such as a flexible display or processor, very thin layers of single crystal silicon can be peeled from a thick substrate and placed on to a compliant substrate. Even though silicon is a stiff, brittle material, it can be made extremely flexible by making it less than 1-micron thick.

However, a key challenge is that there are few techniques available to move large-area thin layers, which are floppy and fragile. Microtransfer printing has emerged as a potential option for thin layer transfer since it can be done quickly and used to create a large number of devices.

Microtransfer printing relies on surface adhesion that occurs thanks to a force known as the van der Waals force. At room temperature, the smooth surface of the silicone stamp bonds directly to micro- or nanostructures via these forces, allowing the structures to be picked up. In nature, van der Waals forces allow gecko lizards to adhere their feet to surfaces in order to scale walls and scamper across ceilings.

Turner will use a combination of modeling and experiments to investigate the fundamental behavior of van der Waals-based adhesion in microtransfer printing processes. Based on this fundamental study, he will explore using surface texture and geometric structures on the surfaces of the silicone stamps to control adhesion. He also will identify optimal stamp designs for the pick up and release of micro- and nanostructures, will research new types of composite stamps based on materials other than silicone, and will examine how different loading techniques can be used to further control adhesion.

"If we measure the forces that govern microtransfer processes and develop computational models that capture the fundamental interfacial behavior, then we can examine higher level manufacturing questions," Turner says. "We then can use that knowledge to design more effective manufacturing processes and techniques."

In addition to his research, Turner will develop advanced graduate courses in adhesion and contact mechanics, as well as an undergraduate elective in the design and manufacturing of nano- and microsystems. He also will host local K-12 teachers in his lab during the summer and will work with the teachers to develop lesson plans about nanotechnology for elementary and high school students.

####

About University of Wisconsin-Madison
In achievement and prestige, the University of Wisconsin–Madison has long been recognized as one of America's great universities. A public, land-grant institution, UW–Madison offers a complete spectrum of liberal arts studies, professional programs and student activities. Spanning 933 acres along the southern shore of Lake Mendota, the campus is located in the city of Madison.

For more information, please click here

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Physics

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Entanglement: Chaos - Researchers at UCSB blur the line between classical and quantum physics by connecting chaos and entanglement July 14th, 2016

3D printing

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Exploring superconducting properties of 3-D printed parts: Australian researchers use 3-D printing to create a resonant microwave cavity via an aluminum-silicon alloy that boasts superconductivity when cooled below the critical temperature of aluminum July 20th, 2016

Scientists move 1 step closer to creating an invisibility cloak July 15th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016

Integrated trio of 2-D nanomaterials unlocks graphene electronics applications: Voltage-controlled oscillator developed at UC Riverside could be used in thousands of applications from computers to wearable technologies July 7th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Thin films

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Possible Futures

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Academic/Education

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

MEMS

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

New research unveils graphene 'moth eyes' to power future smart technologies: New ultra-thin, patterned graphene sheets will be essential in designing future technologies such as 'smart wallpaper' and Internet-of-things applications March 1st, 2016

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

MEMS & Sensors Industry Group Previews “Internet of MEMS & Sensors” at CES 2016 -- Global industry association invites CE OEMS/integrators to conference track on January 7 January 6th, 2016

Announcements

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Photonics/Optics/Lasers

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

RMIT researchers make leap in measuring quantum states July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Solar/Photovoltaic

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic