Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Studying the force: Turner earns CAREER award for research on micro-devices

Kevin T. Turner
Kevin T. Turner

Abstract:
Imagine reading this article on an electronic screen that could be rolled up and put into a pocket. Someday, the electronics to power this kind of screen may be produced by a process that relies on a very simple tool: a stamp.

Studying the force: Turner earns CAREER award for research on micro-devices

Madison, WI | Posted on November 13th, 2009

Reliable flexible displays are only one of a variety of new microelectronic and micromechanical devices that may become possible thanks to fundamental research by Mechanical Engineering Assistant Professor Kevin Turner. Turner is studying the underlying physics and mechanics of adhesion during a process called microtransfer printing. He will use his research to improve microtransfer printing manufacturing processes, which eventually could be used to produce a host of innovative technologies, such as advanced optoelectronic devices, high efficiency solar cells, and new types of microelectromechanical systems.

His work has garnered a prestigious National Science Foundation CAREER award, which recognizes faculty members at the beginning of their academic careers who have developed creative projects that effectively integrate advanced research and education. Turner's award comes with a five-year $430,000 grant.

Microtransfer printing is essentially a process that "prints" with solid materials rather than ink. A silicone stamp is designed with a smooth side that is used to pick up micro- or nanostructures from the substrate on which they are originally fabricated. The stamp is used to transfer these structures — which may be fully processed integrated circuits or building blocks for more complex devices — and places them down on another substrate or functional device.

Traditional silicon-based microelectronic devices are constructed on thick wafers, which produce rigid devices. To create a flexible device, such as a flexible display or processor, very thin layers of single crystal silicon can be peeled from a thick substrate and placed on to a compliant substrate. Even though silicon is a stiff, brittle material, it can be made extremely flexible by making it less than 1-micron thick.

However, a key challenge is that there are few techniques available to move large-area thin layers, which are floppy and fragile. Microtransfer printing has emerged as a potential option for thin layer transfer since it can be done quickly and used to create a large number of devices.

Microtransfer printing relies on surface adhesion that occurs thanks to a force known as the van der Waals force. At room temperature, the smooth surface of the silicone stamp bonds directly to micro- or nanostructures via these forces, allowing the structures to be picked up. In nature, van der Waals forces allow gecko lizards to adhere their feet to surfaces in order to scale walls and scamper across ceilings.

Turner will use a combination of modeling and experiments to investigate the fundamental behavior of van der Waals-based adhesion in microtransfer printing processes. Based on this fundamental study, he will explore using surface texture and geometric structures on the surfaces of the silicone stamps to control adhesion. He also will identify optimal stamp designs for the pick up and release of micro- and nanostructures, will research new types of composite stamps based on materials other than silicone, and will examine how different loading techniques can be used to further control adhesion.

"If we measure the forces that govern microtransfer processes and develop computational models that capture the fundamental interfacial behavior, then we can examine higher level manufacturing questions," Turner says. "We then can use that knowledge to design more effective manufacturing processes and techniques."

In addition to his research, Turner will develop advanced graduate courses in adhesion and contact mechanics, as well as an undergraduate elective in the design and manufacturing of nano- and microsystems. He also will host local K-12 teachers in his lab during the summer and will work with the teachers to develop lesson plans about nanotechnology for elementary and high school students.

####

About University of Wisconsin-Madison
In achievement and prestige, the University of Wisconsin–Madison has long been recognized as one of America's great universities. A public, land-grant institution, UW–Madison offers a complete spectrum of liberal arts studies, professional programs and student activities. Spanning 933 acres along the southern shore of Lake Mendota, the campus is located in the city of Madison.

For more information, please click here

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Physics

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Atomic scale Moiré patterns to push electronic boundaries? November 1st, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

3D printing/Additive-manufacturing

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Thin films

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Possible Futures

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

MEMS

First Capacitive Transducer with 13nm Gap July 27th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Announcements

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Photonics/Optics/Lasers

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Solar/Photovoltaic

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project